Bicrossproduct Hopf quasigroups
Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 2, pp. 287-304.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We recall the notion of Hopf quasigroups introduced previously by the authors. We construct a bicrossproduct Hopf quasigroup $kM {\triangleright\blacktriangleleft} k(G)$ from every group $X$ with a finite subgroup $G\subset X$ and IP quasigroup transversal $M\subset X$ subject to certain conditions. We identify the octonions quasigroup $G_{\mathbb O}$ as transversal in an order 128 group $X$ with subgroup $\mathbb Z_2^3$ and hence obtain a Hopf quasigroup $kG_{\mathbb O}{{>\blacktriangleleft}} k(\mathbb Z_2^3)$ as a particular case of our construction.
Classification : 16S36, 16W50, 81R50
Keywords: IP loop; octonions; quantum group; quasiHopf algebra; monoidal category; finite group; coset
@article{CMUC_2010__51_2_a13,
     author = {Klim, Jennifer and Majid, Shahn},
     title = {Bicrossproduct {Hopf} quasigroups},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {287--304},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {2010},
     mrnumber = {2682482},
     zbl = {1224.81014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2010__51_2_a13/}
}
TY  - JOUR
AU  - Klim, Jennifer
AU  - Majid, Shahn
TI  - Bicrossproduct Hopf quasigroups
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2010
SP  - 287
EP  - 304
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2010__51_2_a13/
LA  - en
ID  - CMUC_2010__51_2_a13
ER  - 
%0 Journal Article
%A Klim, Jennifer
%A Majid, Shahn
%T Bicrossproduct Hopf quasigroups
%J Commentationes Mathematicae Universitatis Carolinae
%D 2010
%P 287-304
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2010__51_2_a13/
%G en
%F CMUC_2010__51_2_a13
Klim, Jennifer; Majid, Shahn. Bicrossproduct Hopf quasigroups. Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 2, pp. 287-304. http://geodesic.mathdoc.fr/item/CMUC_2010__51_2_a13/