A construction of a Fréchet-Urysohn space, and some convergence concepts
Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 1, pp. 99-112
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Some strong versions of the Fréchet-Urysohn property are introduced and studied. We also strengthen the concept of countable tightness and generalize the notions of first-countability and countable base. A construction of a topological space is described which results, in particular, in a Tychonoff countable Fréchet-Urysohn space which is not first-countable at any point. It is shown that this space can be represented as the image of a countable metrizable space under a continuous pseudoopen mapping. On the other hand, if a topological group $G$ is an image of a separable metrizable space under a pseudoopen continuous mapping, then $G$ is metrizable (Theorem 5.6). Several other applications of the techniques developed below to the study of pseudoopen mappings and intersections of topologies are given (see Theorem 5.17).
Classification :
54D20, 54G20, 54J99
Keywords: first-countable; Fréchet-Urysohn; countably compact; closure-sensor; topological group; strong FU-sensor; pseudoopen mapping; side-base; $\omega $-Fréchet-Urysohn space
Keywords: first-countable; Fréchet-Urysohn; countably compact; closure-sensor; topological group; strong FU-sensor; pseudoopen mapping; side-base; $\omega $-Fréchet-Urysohn space
@article{CMUC_2010__51_1_a8,
author = {Arhangel'skii, A. V.},
title = {A construction of a {Fr\'echet-Urysohn} space, and some convergence concepts},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {99--112},
publisher = {mathdoc},
volume = {51},
number = {1},
year = {2010},
mrnumber = {2666083},
zbl = {1224.54055},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2010__51_1_a8/}
}
TY - JOUR AU - Arhangel'skii, A. V. TI - A construction of a Fréchet-Urysohn space, and some convergence concepts JO - Commentationes Mathematicae Universitatis Carolinae PY - 2010 SP - 99 EP - 112 VL - 51 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2010__51_1_a8/ LA - en ID - CMUC_2010__51_1_a8 ER -
Arhangel'skii, A. V. A construction of a Fréchet-Urysohn space, and some convergence concepts. Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 1, pp. 99-112. http://geodesic.mathdoc.fr/item/CMUC_2010__51_1_a8/