Two notes on eventually differentiable families of operators
Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 1, pp. 19-24.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In the first note we show for a strongly continuous family of operators $(T(t))_{t\ge 0}$ that if every orbit $t\mapsto T(t)x$ is differentiable for $t>t_x$, then all orbits are differentiable for $t>t_0$ with $t_0$ independent of $x$. In the second note we give an example of an eventually differentiable semigroup which is not differentiable on the same interval in the operator norm topology.
Classification : 47D06
Keywords: eventually differentiable semigroups; operator families
@article{CMUC_2010__51_1_a2,
     author = {B\'arta, Tom\'a\v{s}},
     title = {Two notes on eventually differentiable families of operators},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {19--24},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {2010},
     mrnumber = {2666077},
     zbl = {1222.47066},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2010__51_1_a2/}
}
TY  - JOUR
AU  - Bárta, Tomáš
TI  - Two notes on eventually differentiable families of operators
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2010
SP  - 19
EP  - 24
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2010__51_1_a2/
LA  - en
ID  - CMUC_2010__51_1_a2
ER  - 
%0 Journal Article
%A Bárta, Tomáš
%T Two notes on eventually differentiable families of operators
%J Commentationes Mathematicae Universitatis Carolinae
%D 2010
%P 19-24
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2010__51_1_a2/
%G en
%F CMUC_2010__51_1_a2
Bárta, Tomáš. Two notes on eventually differentiable families of operators. Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 1, pp. 19-24. http://geodesic.mathdoc.fr/item/CMUC_2010__51_1_a2/