On weakly monotonically monolithic spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 1, pp. 133-142.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this note, we introduce the concept of weakly monotonically monolithic spaces, and show that every weakly monotonically monolithic space is a $D$-space. Thus most known conclusions on $D$-spaces can be obtained by this conclusion. As a corollary, we have that if a regular space $X$ is sequential and has a point-countable $wcs^*$-network then $X$ is a $D$-space.
Classification : 54F99, 54G99
Keywords: $D$-space; sequential space; $wcs^*$-network; weakly monotonically monolithic space
@article{CMUC_2010__51_1_a10,
     author = {Peng, Liang-Xue},
     title = {On weakly monotonically monolithic spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {133--142},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {2010},
     mrnumber = {2666085},
     zbl = {1224.54078},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2010__51_1_a10/}
}
TY  - JOUR
AU  - Peng, Liang-Xue
TI  - On weakly monotonically monolithic spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2010
SP  - 133
EP  - 142
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2010__51_1_a10/
LA  - en
ID  - CMUC_2010__51_1_a10
ER  - 
%0 Journal Article
%A Peng, Liang-Xue
%T On weakly monotonically monolithic spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2010
%P 133-142
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2010__51_1_a10/
%G en
%F CMUC_2010__51_1_a10
Peng, Liang-Xue. On weakly monotonically monolithic spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 51 (2010) no. 1, pp. 133-142. http://geodesic.mathdoc.fr/item/CMUC_2010__51_1_a10/