Notes on commutative parasemifields
Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 4, pp. 521-533
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Parasemifields (i.e., commutative semirings whose multiplicative semigroups are groups) are considered in more detail. We show that if a parasemifield $S$ contains $\Bbb Q^+$ as a subparasemifield and is generated by $\Bbb Q^{+}\cup \{a\}$, $a\in S$, as a semiring, then $S$ is (as a semiring) not finitely generated.
@article{CMUC_2009__50_4_a2,
author = {Kala, V{\'\i}t\v{e}zslav and Kepka, Tom\'a\v{s} and Korbel\'a\v{r}, Miroslav},
title = {Notes on commutative parasemifields},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {521--533},
publisher = {mathdoc},
volume = {50},
number = {4},
year = {2009},
mrnumber = {2583130},
zbl = {1203.16038},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2009__50_4_a2/}
}
TY - JOUR AU - Kala, Vítězslav AU - Kepka, Tomáš AU - Korbelář, Miroslav TI - Notes on commutative parasemifields JO - Commentationes Mathematicae Universitatis Carolinae PY - 2009 SP - 521 EP - 533 VL - 50 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2009__50_4_a2/ LA - en ID - CMUC_2009__50_4_a2 ER -
Kala, Vítězslav; Kepka, Tomáš; Korbelář, Miroslav. Notes on commutative parasemifields. Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 4, pp. 521-533. http://geodesic.mathdoc.fr/item/CMUC_2009__50_4_a2/