Notes on commutative parasemifields
Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 4, pp. 521-533.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Parasemifields (i.e., commutative semirings whose multiplicative semigroups are groups) are considered in more detail. We show that if a parasemifield $S$ contains $\Bbb Q^+$ as a subparasemifield and is generated by $\Bbb Q^{+}\cup \{a\}$, $a\in S$, as a semiring, then $S$ is (as a semiring) not finitely generated.
Classification : 16Y60
Keywords: semiring; ideal-simple; parasemifield; finitely generated
@article{CMUC_2009__50_4_a2,
     author = {Kala, V{\'\i}t\v{e}zslav and Kepka, Tom\'a\v{s} and Korbel\'a\v{r}, Miroslav},
     title = {Notes on commutative parasemifields},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {521--533},
     publisher = {mathdoc},
     volume = {50},
     number = {4},
     year = {2009},
     mrnumber = {2583130},
     zbl = {1203.16038},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2009__50_4_a2/}
}
TY  - JOUR
AU  - Kala, Vítězslav
AU  - Kepka, Tomáš
AU  - Korbelář, Miroslav
TI  - Notes on commutative parasemifields
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2009
SP  - 521
EP  - 533
VL  - 50
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2009__50_4_a2/
LA  - en
ID  - CMUC_2009__50_4_a2
ER  - 
%0 Journal Article
%A Kala, Vítězslav
%A Kepka, Tomáš
%A Korbelář, Miroslav
%T Notes on commutative parasemifields
%J Commentationes Mathematicae Universitatis Carolinae
%D 2009
%P 521-533
%V 50
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2009__50_4_a2/
%G en
%F CMUC_2009__50_4_a2
Kala, Vítězslav; Kepka, Tomáš; Korbelář, Miroslav. Notes on commutative parasemifields. Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 4, pp. 521-533. http://geodesic.mathdoc.fr/item/CMUC_2009__50_4_a2/