On the Lindelöf property of spaces of continuous functions over a Tychonoff space and its subspaces
Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 4, pp. 629-635
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We study relations between the Lindelöf property in the spaces of continuous functions with the topology of pointwise convergence over a Tychonoff space and over its subspaces. We prove, in particular, the following: a) if $C_p(X)$ is Lindelöf, $Y=X\cup\{p\}$, and the point $p$ has countable character in $Y$, then $C_p(Y)$ is Lindelöf; b) if $Y$ is a cozero subspace of a Tychonoff space $X$, then $l(C_p(Y)^\omega)\le l(C_p(X)^\omega)$ and $\operatorname{ext}(C_p(Y)^\omega)\le \operatorname{ext}(C_p(X)^\omega)$.
@article{CMUC_2009__50_4_a11,
author = {Okunev, Oleg},
title = {On the {Lindel\"of} property of spaces of continuous functions over a {Tychonoff} space and its subspaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {629--635},
publisher = {mathdoc},
volume = {50},
number = {4},
year = {2009},
mrnumber = {2583139},
zbl = {1212.54052},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2009__50_4_a11/}
}
TY - JOUR AU - Okunev, Oleg TI - On the Lindelöf property of spaces of continuous functions over a Tychonoff space and its subspaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 2009 SP - 629 EP - 635 VL - 50 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2009__50_4_a11/ LA - en ID - CMUC_2009__50_4_a11 ER -
%0 Journal Article %A Okunev, Oleg %T On the Lindelöf property of spaces of continuous functions over a Tychonoff space and its subspaces %J Commentationes Mathematicae Universitatis Carolinae %D 2009 %P 629-635 %V 50 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_2009__50_4_a11/ %G en %F CMUC_2009__50_4_a11
Okunev, Oleg. On the Lindelöf property of spaces of continuous functions over a Tychonoff space and its subspaces. Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 4, pp. 629-635. http://geodesic.mathdoc.fr/item/CMUC_2009__50_4_a11/