Linear forms and axioms of choice
Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 3, pp. 421-431.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We work in set-theory without choice ZF. Given a commutative field $\mathbb K$, we consider the statement $\mathbf D (\mathbb K)$: “On every non null $\mathbb K$-vector space there exists a non-null linear form.” We investigate various statements which are equivalent to $\mathbf D (\mathbb K)$ in ZF. Denoting by $\mathbb Z_2$ the two-element field, we deduce that $\mathbf D (\mathbb Z_2)$ implies the axiom of choice for pairs. We also deduce that $\mathbf D (\mathbb Q)$ implies the axiom of choice for linearly ordered sets isomorphic with $\mathbb Z$.
Classification : 03E25, 15A03
Keywords: Axiom of Choice; axiom of finite choice; bases in a vector space; linear forms
@article{CMUC_2009__50_3_a8,
     author = {Morillon, Marianne},
     title = {Linear forms and axioms of choice},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {421--431},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2009},
     mrnumber = {2573415},
     zbl = {1212.03034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2009__50_3_a8/}
}
TY  - JOUR
AU  - Morillon, Marianne
TI  - Linear forms and axioms of choice
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2009
SP  - 421
EP  - 431
VL  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2009__50_3_a8/
LA  - en
ID  - CMUC_2009__50_3_a8
ER  - 
%0 Journal Article
%A Morillon, Marianne
%T Linear forms and axioms of choice
%J Commentationes Mathematicae Universitatis Carolinae
%D 2009
%P 421-431
%V 50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2009__50_3_a8/
%G en
%F CMUC_2009__50_3_a8
Morillon, Marianne. Linear forms and axioms of choice. Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 3, pp. 421-431. http://geodesic.mathdoc.fr/item/CMUC_2009__50_3_a8/