The theorems of Stewart and Steiner in the Poincaré disc model of hyperbolic geometry
Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 3, pp. 359-371.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In [Comput. Math. Appl. 41 (2001), 135--147], A. A. Ungar employs the Möbius gyrovector spaces for the introduction of the hyperbolic trigonometry. This Ungar's work plays a major role in translating some theorems from Euclidean geometry to corresponding theorems in hyperbolic geometry. In this paper we explore the theorems of Stewart and Steiner in the Poincaré disc model of hyperbolic geometry.
Classification : 20N05, 30F45, 51B10, 51M10
Keywords: Möbius transformation; hyperbolic geometry; gyrogroups; gyrovector spaces and hyperbolic trigonometry
@article{CMUC_2009__50_3_a3,
     author = {Demirel, O\u{g}uzhan},
     title = {The theorems of {Stewart} and {Steiner} in the {Poincar\'e} disc model of hyperbolic geometry},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {359--371},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2009},
     mrnumber = {2573410},
     zbl = {1212.51002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2009__50_3_a3/}
}
TY  - JOUR
AU  - Demirel, Oğuzhan
TI  - The theorems of Stewart and Steiner in the Poincaré disc model of hyperbolic geometry
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2009
SP  - 359
EP  - 371
VL  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2009__50_3_a3/
LA  - en
ID  - CMUC_2009__50_3_a3
ER  - 
%0 Journal Article
%A Demirel, Oğuzhan
%T The theorems of Stewart and Steiner in the Poincaré disc model of hyperbolic geometry
%J Commentationes Mathematicae Universitatis Carolinae
%D 2009
%P 359-371
%V 50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2009__50_3_a3/
%G en
%F CMUC_2009__50_3_a3
Demirel, Oğuzhan. The theorems of Stewart and Steiner in the Poincaré disc model of hyperbolic geometry. Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 3, pp. 359-371. http://geodesic.mathdoc.fr/item/CMUC_2009__50_3_a3/