Central subsets of Urysohn universal spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 3, pp. 445-461.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A subset $A$ of a metric space $(X,d)$ is central iff for every Katětov map $f: X \to \mathbb R$ upper bounded by the diameter of $X$ and any finite subset $B$ of $X$ there is $x\in X$ such that $f(a) = d(x,a)$ for each $a\in A \cup B$. Central subsets of the Urysohn universal space $\mathbb U$ (see introduction) are studied. It is proved that a metric space $X$ is isometrically embeddable into $\mathbb U$ as a central set iff $X$ has the collinearity property. The Katětov maps of the real line are characterized.
Classification : 54D65, 54E50
Keywords: Urysohn's universal space; ultrahomogeneous spaces; extensions of isometries
@article{CMUC_2009__50_3_a10,
     author = {Niemiec, Piotr},
     title = {Central subsets of {Urysohn} universal spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {445--461},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2009},
     mrnumber = {2573417},
     zbl = {1212.54093},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2009__50_3_a10/}
}
TY  - JOUR
AU  - Niemiec, Piotr
TI  - Central subsets of Urysohn universal spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2009
SP  - 445
EP  - 461
VL  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2009__50_3_a10/
LA  - en
ID  - CMUC_2009__50_3_a10
ER  - 
%0 Journal Article
%A Niemiec, Piotr
%T Central subsets of Urysohn universal spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2009
%P 445-461
%V 50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2009__50_3_a10/
%G en
%F CMUC_2009__50_3_a10
Niemiec, Piotr. Central subsets of Urysohn universal spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 3, pp. 445-461. http://geodesic.mathdoc.fr/item/CMUC_2009__50_3_a10/