Central subsets of Urysohn universal spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 3, pp. 445-461
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A subset $A$ of a metric space $(X,d)$ is central iff for every Katětov map $f: X \to \mathbb R$ upper bounded by the diameter of $X$ and any finite subset $B$ of $X$ there is $x\in X$ such that $f(a) = d(x,a)$ for each $a\in A \cup B$. Central subsets of the Urysohn universal space $\mathbb U$ (see introduction) are studied. It is proved that a metric space $X$ is isometrically embeddable into $\mathbb U$ as a central set iff $X$ has the collinearity property. The Katětov maps of the real line are characterized.
Classification :
54D65, 54E50
Keywords: Urysohn's universal space; ultrahomogeneous spaces; extensions of isometries
Keywords: Urysohn's universal space; ultrahomogeneous spaces; extensions of isometries
@article{CMUC_2009__50_3_a10,
author = {Niemiec, Piotr},
title = {Central subsets of {Urysohn} universal spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {445--461},
publisher = {mathdoc},
volume = {50},
number = {3},
year = {2009},
mrnumber = {2573417},
zbl = {1212.54093},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2009__50_3_a10/}
}
Niemiec, Piotr. Central subsets of Urysohn universal spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 3, pp. 445-461. http://geodesic.mathdoc.fr/item/CMUC_2009__50_3_a10/