More on cardinal invariants of analytic $P$-ideals
Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 2, pp. 281-295.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Given an ideal $\mathcal I$ on $\omega $ let $\mathfrak{a} (\mathcal I)$ ($\bar{\mathfrak{a}}(\mathcal I)$) be minimum of the cardinalities of infinite (uncountable) maximal $\mathcal I$-almost disjoint subsets of $[{\omega}]^{\omega}$. We show that $\mathfrak{a} (\mathcal I_h)>{\omega}$ if $\mathcal I_h$ is a summable ideal; but $\mathfrak{a} ({\mathcal Z_{\vec \mu }})= {\omega}$ for any tall density ideal $\mathcal Z_{\vec \mu }$ including the density zero ideal $\mathcal Z$. On the other hand, you have $\mathfrak{b}\le \bar{\mathfrak{a}}(\mathcal I)$ for any analytic $P$-ideal $\mathcal I$, and $\bar{\mathfrak{a}}(\mathcal Z_{\vec \mu })\le \mathfrak{a}$ for each density ideal $\mathcal Z_{\vec \mu }$. For each ideal $\mathcal I$ on $\omega $ denote $\mathfrak{b}_{\mathcal I}$ and $\mathfrak{d}_{\mathcal I}$ the unbounding and dominating numbers of $\langle \omega ^\omega , \le_{\mathcal I}\rangle $ where $f\le_{\mathcal I} g$ iff $\{n\in \omega :f(n)> g(n)\}\in \mathcal I$. We show that $\mathfrak{b}_{\mathcal I}= \mathfrak{b}$ and $\mathfrak{d}_{\mathcal I}= \mathfrak{d}$ for each analytic $P$-ideal $\mathcal I$. Given a Borel ideal $\mathcal I$ on $\omega $ we say that a poset $\mathbb P$ is {\em $\mathcal I$-bounding\/} iff $\forall\, x\in \mathcal I\cap V^{\mathbb P}$ $\exists\, y\in \mathcal I\cap V$ $x\subseteq y$. $\mathbb P$ is {\em $\mathcal I$-dominating\/} iff $\exists\, y\in \mathcal I\cap V^{\mathbb P}$ $\forall\, x\in \mathcal I\cap V$ $x\subseteq^* y$. For each analytic $P$-ideal $\mathcal I$ if a poset $\mathbb P$ has the Sacks property then $\mathbb P$ is $\mathcal I$-bounding; moreover if $\mathcal I$ is tall as well then the property $\mathcal I$-bounding/$\mathcal I$-dominating implies ${\omega}^{\omega}$-bounding/adding dominating reals, and the converses of these two implications are false. For the density zero ideal $\mathcal Z$ we can prove more: (i) a poset $\mathbb P$ is $\mathcal Z$-bounding iff it has the Sacks property, (ii) if $\mathbb P$ adds a slalom capturing all ground model reals then $\mathbb P$ is $\mathcal Z$-dominating.
Classification : 03E17, 03E35
Keywords: analytic $P$-ideals; cardinal invariants; forcing
@article{CMUC_2009__50_2_a8,
     author = {Farkas, Barnab\'as and Soukup, Lajos},
     title = {More on cardinal invariants of analytic $P$-ideals},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {281--295},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2009},
     mrnumber = {2537837},
     zbl = {1212.03035},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2009__50_2_a8/}
}
TY  - JOUR
AU  - Farkas, Barnabás
AU  - Soukup, Lajos
TI  - More on cardinal invariants of analytic $P$-ideals
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2009
SP  - 281
EP  - 295
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2009__50_2_a8/
LA  - en
ID  - CMUC_2009__50_2_a8
ER  - 
%0 Journal Article
%A Farkas, Barnabás
%A Soukup, Lajos
%T More on cardinal invariants of analytic $P$-ideals
%J Commentationes Mathematicae Universitatis Carolinae
%D 2009
%P 281-295
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2009__50_2_a8/
%G en
%F CMUC_2009__50_2_a8
Farkas, Barnabás; Soukup, Lajos. More on cardinal invariants of analytic $P$-ideals. Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 2, pp. 281-295. http://geodesic.mathdoc.fr/item/CMUC_2009__50_2_a8/