The fixed points and iterated order of some differential polynomials
Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 2, pp. 209-219.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This paper is devoted to considering the iterated order and the fixed points of some differential polynomials generated by solutions of the differential equation $$ f^{^{\prime \prime }}+A_{1}(z) f^{^{\prime }} + A_{0}(z) f=F, $$ where $A_{1}(z)$, $A_{0}(z)$ $(\not\equiv 0)$, $F$ are meromorphic functions of finite iterated $p$-order.
Classification : 30D35, 34M10
Keywords: linear differential equations; differential polynomials; meromorphic solutions; iterated order; iterated exponent of convergence of the sequence of distinct zeros
@article{CMUC_2009__50_2_a3,
     author = {Belaidi, Benharrat},
     title = {The fixed points and iterated order of some differential polynomials},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {209--219},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2009},
     mrnumber = {2537832},
     zbl = {1212.34278},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2009__50_2_a3/}
}
TY  - JOUR
AU  - Belaidi, Benharrat
TI  - The fixed points and iterated order of some differential polynomials
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2009
SP  - 209
EP  - 219
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2009__50_2_a3/
LA  - en
ID  - CMUC_2009__50_2_a3
ER  - 
%0 Journal Article
%A Belaidi, Benharrat
%T The fixed points and iterated order of some differential polynomials
%J Commentationes Mathematicae Universitatis Carolinae
%D 2009
%P 209-219
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2009__50_2_a3/
%G en
%F CMUC_2009__50_2_a3
Belaidi, Benharrat. The fixed points and iterated order of some differential polynomials. Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 2, pp. 209-219. http://geodesic.mathdoc.fr/item/CMUC_2009__50_2_a3/