Interpolation of $\kappa$-compactness and PCF
Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 2, pp. 315-320.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We call a topological space $\kappa$-compact if every subset of size $\kappa$ has a complete accumulation point in it. Let $\Phi(\mu,\kappa,\lambda)$ denote the following statement: $\mu \kappa \lambda = \operatorname{cf} (\lambda)$ and there is $\{ S_\xi : \xi \lambda \} \subset [\kappa]^\mu$ such that $|\{ \xi : |S_\xi \cap A| = \mu \}| \lambda$ whenever $A \in [\kappa]^{\kappa}$. We show that if $\Phi(\mu,\kappa,\lambda)$ holds and the space $X$ is both $\mu$-compact and $\lambda$-compact then $X$ is $\kappa$-compact as well. Moreover, from PCF theory we deduce $\Phi(\operatorname{cf} (\kappa), \kappa, \kappa^+)$ for every singular cardinal $\kappa$. As a corollary we get that a linearly Lindelöf and $\aleph_\omega$-compact space is uncountably compact, that is $\kappa$-compact for all uncountable cardinals $\kappa$.
Classification : 03E04, 54A25, 54D30
Keywords: complete accumulation point; $\kappa$-compact space; linearly Lindelöf space; PCF theory
@article{CMUC_2009__50_2_a10,
     author = {Juh\'asz, Istv\'an and Szentmikl\'ossy, Zolt\'an},
     title = {Interpolation of $\kappa$-compactness and {PCF}},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {315--320},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2009},
     mrnumber = {2537839},
     zbl = {1212.03029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2009__50_2_a10/}
}
TY  - JOUR
AU  - Juhász, István
AU  - Szentmiklóssy, Zoltán
TI  - Interpolation of $\kappa$-compactness and PCF
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2009
SP  - 315
EP  - 320
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2009__50_2_a10/
LA  - en
ID  - CMUC_2009__50_2_a10
ER  - 
%0 Journal Article
%A Juhász, István
%A Szentmiklóssy, Zoltán
%T Interpolation of $\kappa$-compactness and PCF
%J Commentationes Mathematicae Universitatis Carolinae
%D 2009
%P 315-320
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2009__50_2_a10/
%G en
%F CMUC_2009__50_2_a10
Juhász, István; Szentmiklóssy, Zoltán. Interpolation of $\kappa$-compactness and PCF. Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 2, pp. 315-320. http://geodesic.mathdoc.fr/item/CMUC_2009__50_2_a10/