On Butler $B(2)$-groups decomposing over two base elements
Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 2, pp. 165-179
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A $B(2)$-group is a sum of a finite number of torsionfree Abelian groups of rank $1$, subject to two independent linear relations. We complete here the study of direct decompositions over two base elements, determining the cases where the relations play an essential role.
Classification :
06B99, 06F99, 20K15
Keywords: Abelian group; torsionfree; finite rank; Butler group; $B(1)$-group; $B(2)$-group; type; tent; base change; direct decomposition; typeset
Keywords: Abelian group; torsionfree; finite rank; Butler group; $B(1)$-group; $B(2)$-group; type; tent; base change; direct decomposition; typeset
@article{CMUC_2009__50_2_a0,
author = {De Vivo, Clorinda and Metelli, Claudia},
title = {On {Butler} $B(2)$-groups decomposing over two base elements},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {165--179},
publisher = {mathdoc},
volume = {50},
number = {2},
year = {2009},
mrnumber = {2537829},
zbl = {1204.20071},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2009__50_2_a0/}
}
TY - JOUR AU - De Vivo, Clorinda AU - Metelli, Claudia TI - On Butler $B(2)$-groups decomposing over two base elements JO - Commentationes Mathematicae Universitatis Carolinae PY - 2009 SP - 165 EP - 179 VL - 50 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2009__50_2_a0/ LA - en ID - CMUC_2009__50_2_a0 ER -
%0 Journal Article %A De Vivo, Clorinda %A Metelli, Claudia %T On Butler $B(2)$-groups decomposing over two base elements %J Commentationes Mathematicae Universitatis Carolinae %D 2009 %P 165-179 %V 50 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_2009__50_2_a0/ %G en %F CMUC_2009__50_2_a0
De Vivo, Clorinda; Metelli, Claudia. On Butler $B(2)$-groups decomposing over two base elements. Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 2, pp. 165-179. http://geodesic.mathdoc.fr/item/CMUC_2009__50_2_a0/