Linear inessential operators and generalized inverses
Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 1, pp. 75-82
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The space of inessential bounded linear operators from one Banach space $X$ into another $Y$ is introduced. This space, $I(X,Y)$, is a subspace of $B(X,Y)$ which generalizes Kleinecke's ideal of inessential operators. For certain subspaces $W$ of $\,I(X,Y)$, it is shown that when $T\in B(X,Y)$ has a generalized inverse modulo $W$, then there exists a projection $P\in B(X)$ such that $T(I-P)$ has a generalized inverse and $TP\in W$.
Classification :
47A05, 47A55
Keywords: inessential operator; Fredholm operator; generalized inverse
Keywords: inessential operator; Fredholm operator; generalized inverse
@article{CMUC_2009__50_1_a5,
author = {Barnes, Bruce A.},
title = {Linear inessential operators and generalized inverses},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {75--82},
publisher = {mathdoc},
volume = {50},
number = {1},
year = {2009},
mrnumber = {2562804},
zbl = {1212.47001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2009__50_1_a5/}
}
Barnes, Bruce A. Linear inessential operators and generalized inverses. Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 1, pp. 75-82. http://geodesic.mathdoc.fr/item/CMUC_2009__50_1_a5/