Linear inessential operators and generalized inverses
Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 1, pp. 75-82.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The space of inessential bounded linear operators from one Banach space $X$ into another $Y$ is introduced. This space, $I(X,Y)$, is a subspace of $B(X,Y)$ which generalizes Kleinecke's ideal of inessential operators. For certain subspaces $W$ of $\,I(X,Y)$, it is shown that when $T\in B(X,Y)$ has a generalized inverse modulo $W$, then there exists a projection $P\in B(X)$ such that $T(I-P)$ has a generalized inverse and $TP\in W$.
Classification : 47A05, 47A55
Keywords: inessential operator; Fredholm operator; generalized inverse
@article{CMUC_2009__50_1_a5,
     author = {Barnes, Bruce A.},
     title = {Linear inessential operators and generalized inverses},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {75--82},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2009},
     mrnumber = {2562804},
     zbl = {1212.47001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2009__50_1_a5/}
}
TY  - JOUR
AU  - Barnes, Bruce A.
TI  - Linear inessential operators and generalized inverses
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2009
SP  - 75
EP  - 82
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2009__50_1_a5/
LA  - en
ID  - CMUC_2009__50_1_a5
ER  - 
%0 Journal Article
%A Barnes, Bruce A.
%T Linear inessential operators and generalized inverses
%J Commentationes Mathematicae Universitatis Carolinae
%D 2009
%P 75-82
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2009__50_1_a5/
%G en
%F CMUC_2009__50_1_a5
Barnes, Bruce A. Linear inessential operators and generalized inverses. Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 1, pp. 75-82. http://geodesic.mathdoc.fr/item/CMUC_2009__50_1_a5/