On $r$-reflexive Banach spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 1, pp. 61-74.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A Banach space $X$ is called {\it $r$-reflexive\/} if for any cover $\Cal U$ of $X$ by weakly open sets there is a finite subfamily $\Cal V\subset\Cal U$ covering some ball of radius 1 centered at a point $x$ with $\|x\|\leq r$. We prove that an infinite-dimensional separable Banach space $X$ is $\infty$-reflexive ($r$-reflexive for some $r\in \Bbb N$) if and only if each $\varepsilon $-net for $X$ has an accumulation point (resp., contains a non-trivial convergent sequence) in the weak topology of $X$. We show that the quasireflexive James space $J$ is $r$-reflexive for no $r\in \Bbb N$. We do not know if each $\infty$-reflexive Banach space is reflexive, but we prove that each separable $\infty$-reflexive Banach space $X$ has Asplund dual. As a by-product of the proof we obtain a covering characterization of the Asplund property of Banach spaces.
Classification : 46A25, 46B10, 46B22
Keywords: reflexive Banach space; $r$-reflexive Banach space; Asplund Banach space
@article{CMUC_2009__50_1_a4,
     author = {Banakh, Iryna and Banakh, Taras and Riss, Elena},
     title = {On $r$-reflexive {Banach} spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {61--74},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2009},
     mrnumber = {2562803},
     zbl = {1212.46022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2009__50_1_a4/}
}
TY  - JOUR
AU  - Banakh, Iryna
AU  - Banakh, Taras
AU  - Riss, Elena
TI  - On $r$-reflexive Banach spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2009
SP  - 61
EP  - 74
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2009__50_1_a4/
LA  - en
ID  - CMUC_2009__50_1_a4
ER  - 
%0 Journal Article
%A Banakh, Iryna
%A Banakh, Taras
%A Riss, Elena
%T On $r$-reflexive Banach spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2009
%P 61-74
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2009__50_1_a4/
%G en
%F CMUC_2009__50_1_a4
Banakh, Iryna; Banakh, Taras; Riss, Elena. On $r$-reflexive Banach spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 1, pp. 61-74. http://geodesic.mathdoc.fr/item/CMUC_2009__50_1_a4/