On $\pi$-metrizable spaces, their continuous images and products
Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 1, pp. 153-162.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A space $X$ is said to be $\pi$-metrizable if it has a $\sigma$-discrete $\pi$-base. The behavior of $\pi$-metrizable spaces under certain types of mappings is studied. In particular we characterize strongly $d$-separable spaces as those which are the image of a $\pi$-metrizable space under a perfect mapping. Each Tychonoff space can be represented as the image of a $\pi$-metrizable space under an open continuous mapping. A question posed by Arhangel'skii regarding if a $\pi$-metrizable topological group must be metrizable receives a negative answer.
Classification : 54B10, 54C10, 54D70
Keywords: $\pi$-metrizable; weakly $\pi$-metrizable; $\pi$-base; $\sigma$-discrete $\pi$-base; $\sigma$-disjoint $\pi$-base; $d$-separable
@article{CMUC_2009__50_1_a13,
     author = {Stover, Derrick},
     title = {On $\pi$-metrizable spaces, their continuous images and products},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {153--162},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2009},
     mrnumber = {2562812},
     zbl = {1212.54033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2009__50_1_a13/}
}
TY  - JOUR
AU  - Stover, Derrick
TI  - On $\pi$-metrizable spaces, their continuous images and products
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2009
SP  - 153
EP  - 162
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2009__50_1_a13/
LA  - en
ID  - CMUC_2009__50_1_a13
ER  - 
%0 Journal Article
%A Stover, Derrick
%T On $\pi$-metrizable spaces, their continuous images and products
%J Commentationes Mathematicae Universitatis Carolinae
%D 2009
%P 153-162
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2009__50_1_a13/
%G en
%F CMUC_2009__50_1_a13
Stover, Derrick. On $\pi$-metrizable spaces, their continuous images and products. Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 1, pp. 153-162. http://geodesic.mathdoc.fr/item/CMUC_2009__50_1_a13/