On $\pi$-metrizable spaces, their continuous images and products
Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 1, pp. 153-162
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A space $X$ is said to be $\pi$-metrizable if it has a $\sigma$-discrete $\pi$-base. The behavior of $\pi$-metrizable spaces under certain types of mappings is studied. In particular we characterize strongly $d$-separable spaces as those which are the image of a $\pi$-metrizable space under a perfect mapping. Each Tychonoff space can be represented as the image of a $\pi$-metrizable space under an open continuous mapping. A question posed by Arhangel'skii regarding if a $\pi$-metrizable topological group must be metrizable receives a negative answer.
Classification :
54B10, 54C10, 54D70
Keywords: $\pi$-metrizable; weakly $\pi$-metrizable; $\pi$-base; $\sigma$-discrete $\pi$-base; $\sigma$-disjoint $\pi$-base; $d$-separable
Keywords: $\pi$-metrizable; weakly $\pi$-metrizable; $\pi$-base; $\sigma$-discrete $\pi$-base; $\sigma$-disjoint $\pi$-base; $d$-separable
@article{CMUC_2009__50_1_a13,
author = {Stover, Derrick},
title = {On $\pi$-metrizable spaces, their continuous images and products},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {153--162},
publisher = {mathdoc},
volume = {50},
number = {1},
year = {2009},
mrnumber = {2562812},
zbl = {1212.54033},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2009__50_1_a13/}
}
TY - JOUR AU - Stover, Derrick TI - On $\pi$-metrizable spaces, their continuous images and products JO - Commentationes Mathematicae Universitatis Carolinae PY - 2009 SP - 153 EP - 162 VL - 50 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2009__50_1_a13/ LA - en ID - CMUC_2009__50_1_a13 ER -
Stover, Derrick. On $\pi$-metrizable spaces, their continuous images and products. Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 1, pp. 153-162. http://geodesic.mathdoc.fr/item/CMUC_2009__50_1_a13/