Topologies on groups determined by right cancellable ultrafilters
Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 1, pp. 135-139
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For every discrete group $G$, the Stone-Čech compactification $\beta G$ of $G$ has a natural structure of a compact right topological semigroup. An ultrafilter $p\in G^*$, where $G^*=\beta G\setminus G$, is called right cancellable if, given any $q,r\in G^*$, $qp=rp$ implies $q=r$. For every right cancellable ultrafilter $p\in G^*$, we denote by $G(p)$ the group $G$ endowed with the strongest left invariant topology in which $p$ converges to the identity of $G$. For any countable group $G$ and any right cancellable ultrafilters $p,q\in G^*$, we show that $G(p)$ is homeomorphic to $G(q)$ if and only if $p$ and $q$ are of the same type.
Classification :
54C05, 54G15, 54H11
Keywords: Stone-Čech compactification; right cancellable ultrafilters; left invariant topologies
Keywords: Stone-Čech compactification; right cancellable ultrafilters; left invariant topologies
@article{CMUC_2009__50_1_a11,
author = {Protasov, I. V.},
title = {Topologies on groups determined by right cancellable ultrafilters},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {135--139},
publisher = {mathdoc},
volume = {50},
number = {1},
year = {2009},
mrnumber = {2562810},
zbl = {1212.54101},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2009__50_1_a11/}
}
TY - JOUR AU - Protasov, I. V. TI - Topologies on groups determined by right cancellable ultrafilters JO - Commentationes Mathematicae Universitatis Carolinae PY - 2009 SP - 135 EP - 139 VL - 50 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2009__50_1_a11/ LA - en ID - CMUC_2009__50_1_a11 ER -
Protasov, I. V. Topologies on groups determined by right cancellable ultrafilters. Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 1, pp. 135-139. http://geodesic.mathdoc.fr/item/CMUC_2009__50_1_a11/