Sequences between d-sequences and sequences of linear type
Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 1, pp. 1-9.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The notion of a d-sequence in Commutative Algebra was introduced by Craig Huneke, while the notion of a sequence of linear type was introduced by Douglas Costa. Both types of sequences gene\-ra\-te ideals of linear type. In this paper we study another type of sequences, that we call c-sequences. They also generate ideals of linear type. We show that c-sequences are in between d-sequences and sequences of linear type and that the initial subsequences of c-sequences are c-sequences. Finally we prove a statement which is useful for computational aspects of the theory of c-sequences.
Classification : 13A15, 13A30, 13B25, 13C13
Keywords: ideal of linear type; c-sequence; d-sequence; sequence of linear type
@article{CMUC_2009__50_1_a0,
     author = {Kulosman, Hamid},
     title = {Sequences between d-sequences and sequences of linear type},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {1--9},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2009},
     mrnumber = {2562799},
     zbl = {1212.13001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2009__50_1_a0/}
}
TY  - JOUR
AU  - Kulosman, Hamid
TI  - Sequences between d-sequences and sequences of linear type
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2009
SP  - 1
EP  - 9
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2009__50_1_a0/
LA  - en
ID  - CMUC_2009__50_1_a0
ER  - 
%0 Journal Article
%A Kulosman, Hamid
%T Sequences between d-sequences and sequences of linear type
%J Commentationes Mathematicae Universitatis Carolinae
%D 2009
%P 1-9
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2009__50_1_a0/
%G en
%F CMUC_2009__50_1_a0
Kulosman, Hamid. Sequences between d-sequences and sequences of linear type. Commentationes Mathematicae Universitatis Carolinae, Tome 50 (2009) no. 1, pp. 1-9. http://geodesic.mathdoc.fr/item/CMUC_2009__50_1_a0/