A note on perfect matchings in uniform hypergraphs with large minimum collective degree
Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 4, pp. 633-636.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For an integer $k\ge2$ and a $k$-uniform hypergraph $H$, let $\delta_{k-1}(H)$ be the largest integer $d$ such that every $(k-1)$-element set of vertices of $H$ belongs to at least $d$ edges of $H$. Further, let $t(k,n)$ be the smallest integer $t$ such that every $k$-uniform hypergraph on $n$ vertices and with $\delta_{k-1}(H)\ge t$ contains a perfect matching. The parameter $t(k,n)$ has been completely determined for all $k$ and large $n$ divisible by $k$ by Rödl, Ruci'nski, and Szemerédi in [{\it Perfect matchings in large uniform hypergraphs with large minimum collective degree\/}, submitted]. The values of $t(k,n)$ are very close to $n/2-k$. In fact, the function $t(k,n)=n/2-k+c_{n,k}$, where $c_{n,k}\in\{3/2, 2, 5/2, 3\}$ depends on the parity of $k$ and $n$. The aim of this short note is to present a simple proof of an only slightly weaker bound: $t(k,n)\le n/2+k/4$. Our argument is based on an idea used in a recent paper of Aharoni, Georgakopoulos, and Spr"ussel.
Classification : 05C65, 05C70
Keywords: hypergraph; perfect matching
@article{CMUC_2008__49_4_a7,
     author = {R\"odl, Vojt\v{e}ch and Ruci\'nski, Andrzej and Schacht, Mathias and Szemer\'edi, Endre},
     title = {A note on perfect matchings in uniform hypergraphs with large minimum collective degree},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {633--636},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2008},
     mrnumber = {2493942},
     zbl = {1212.05215},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2008__49_4_a7/}
}
TY  - JOUR
AU  - Rödl, Vojtěch
AU  - Ruciński, Andrzej
AU  - Schacht, Mathias
AU  - Szemerédi, Endre
TI  - A note on perfect matchings in uniform hypergraphs with large minimum collective degree
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2008
SP  - 633
EP  - 636
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2008__49_4_a7/
LA  - en
ID  - CMUC_2008__49_4_a7
ER  - 
%0 Journal Article
%A Rödl, Vojtěch
%A Ruciński, Andrzej
%A Schacht, Mathias
%A Szemerédi, Endre
%T A note on perfect matchings in uniform hypergraphs with large minimum collective degree
%J Commentationes Mathematicae Universitatis Carolinae
%D 2008
%P 633-636
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2008__49_4_a7/
%G en
%F CMUC_2008__49_4_a7
Rödl, Vojtěch; Ruciński, Andrzej; Schacht, Mathias; Szemerédi, Endre. A note on perfect matchings in uniform hypergraphs with large minimum collective degree. Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 4, pp. 633-636. http://geodesic.mathdoc.fr/item/CMUC_2008__49_4_a7/