On approximation of functions by certain operators preserving $x^2$
Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 4, pp. 579-593
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we extend the Duman-King idea of approximation of functions by positive linear operators preserving $e_k (x)=x^k$, $k=0,2$. Using a modification of certain operators $L_n$ preserving $e_0$ and $e_1$, we introduce operators $L_n^*$ which preserve $e_0$ and $e_2$ and next we define operators $L_{n;r}^{*}$ for $r$-times differentiable functions. We show that $L_n^*$ and $L_{n;r}^{*}$ have better approximation properties than $L_n$ and $L_{n;r}$.
Classification :
41A25, 41A36
Keywords: positive linear operators; polynomial weighted space; degree of approximation
Keywords: positive linear operators; polynomial weighted space; degree of approximation
@article{CMUC_2008__49_4_a4,
author = {Rempulska, Lucyna and Tomczak, Karolina},
title = {On approximation of functions by certain operators preserving $x^2$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {579--593},
publisher = {mathdoc},
volume = {49},
number = {4},
year = {2008},
mrnumber = {2493939},
zbl = {1212.41054},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2008__49_4_a4/}
}
TY - JOUR AU - Rempulska, Lucyna AU - Tomczak, Karolina TI - On approximation of functions by certain operators preserving $x^2$ JO - Commentationes Mathematicae Universitatis Carolinae PY - 2008 SP - 579 EP - 593 VL - 49 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2008__49_4_a4/ LA - en ID - CMUC_2008__49_4_a4 ER -
%0 Journal Article %A Rempulska, Lucyna %A Tomczak, Karolina %T On approximation of functions by certain operators preserving $x^2$ %J Commentationes Mathematicae Universitatis Carolinae %D 2008 %P 579-593 %V 49 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_2008__49_4_a4/ %G en %F CMUC_2008__49_4_a4
Rempulska, Lucyna; Tomczak, Karolina. On approximation of functions by certain operators preserving $x^2$. Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 4, pp. 579-593. http://geodesic.mathdoc.fr/item/CMUC_2008__49_4_a4/