Products and projective limits of function spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 4, pp. 547-578.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We introduce a notion of a product and projective limit of function spaces. We show that the Choquet boundary of the product space is the product of Choquet boundaries. Next we show that the product of simplicial spaces is simplicial. We also show that the maximal measures on the product space are exactly those with maximal projections. We show similar characterizations of the Choquet boundary and the space of maximal measures for the projective limit of function spaces under some additional assumptions and we prove that the projective limit of simplicial spaces is simplicial.
Classification : 26B25, 46A13, 46A32, 46A55, 46E15, 46M40
Keywords: Choquet theory; function space; product; projective limit; simplicial space
@article{CMUC_2008__49_4_a3,
     author = {Ka\v{c}ena, Miroslav},
     title = {Products and projective limits of function spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {547--578},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2008},
     mrnumber = {2493938},
     zbl = {1212.46016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2008__49_4_a3/}
}
TY  - JOUR
AU  - Kačena, Miroslav
TI  - Products and projective limits of function spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2008
SP  - 547
EP  - 578
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2008__49_4_a3/
LA  - en
ID  - CMUC_2008__49_4_a3
ER  - 
%0 Journal Article
%A Kačena, Miroslav
%T Products and projective limits of function spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2008
%P 547-578
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2008__49_4_a3/
%G en
%F CMUC_2008__49_4_a3
Kačena, Miroslav. Products and projective limits of function spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 4, pp. 547-578. http://geodesic.mathdoc.fr/item/CMUC_2008__49_4_a3/