The Lindelöf property and pseudo-$\aleph_1$-compactness in spaces and topological groups
Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 4, pp. 677-692.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We introduce and study, following Z. Frol'{\i}k, the class $\Cal B(\Cal P)$ of regular $P$-spaces $X$ such that the product $X\times Y$ is pseudo-$\aleph_1$-compact, for every regular pseudo-$\aleph_1$-compact $P$-space $Y$. We show that every pseudo-$\aleph_1$-compact space which is locally $\Cal B(\Cal P)$ is in $\Cal B(\Cal P)$ and that every regular Lindelöf $P$-space belongs to $\Cal B(\Cal P)$. It is also proved that all pseudo-$\aleph_1$-compact $P$-groups are in $\Cal B(\Cal P)$. The problem of characterization of subgroups of $\Bbb R$-factor\-izable (equivalently, pseudo-$\aleph_1$-compact) $P$-groups is considered as well. We give some necessary conditions on a topological $P$-group to be a subgroup of an $\Bbb R$-factorizable $P$-group and deduce that there exists an $\omega $-narrow $P$-group that cannot be embedded as a subgroup into any $\Bbb R$-factorizable $P$-group. The class of $\sigma $-products of second-countable topological groups is especially interesting. We prove that {\it all subgroups\/} of the groups in this class are perfectly $\kappa $-normal, $\Bbb R$-factor\-izable, and have countable cellularity. If, in addition, $H$ is a closed subgroup of a $\sigma $-product of second-countable groups, then $H$ is an Efimov space and satisfies $\operatorname{cel}_\omega (H)\leq \omega $.
Classification : 22A05, 54B50, 54D20
Keywords: pseudo-$\aleph_1$-compact space; $\Bbb R$-factorizable group; cellularity; $\sigma$-product
@article{CMUC_2008__49_4_a12,
     author = {Hern\'andez, Constancio and Tkachenko, Mikhail},
     title = {The {Lindel\"of} property and pseudo-$\aleph_1$-compactness in spaces and topological groups},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {677--692},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2008},
     mrnumber = {2493947},
     zbl = {1212.54099},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2008__49_4_a12/}
}
TY  - JOUR
AU  - Hernández, Constancio
AU  - Tkachenko, Mikhail
TI  - The Lindelöf property and pseudo-$\aleph_1$-compactness in spaces and topological groups
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2008
SP  - 677
EP  - 692
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2008__49_4_a12/
LA  - en
ID  - CMUC_2008__49_4_a12
ER  - 
%0 Journal Article
%A Hernández, Constancio
%A Tkachenko, Mikhail
%T The Lindelöf property and pseudo-$\aleph_1$-compactness in spaces and topological groups
%J Commentationes Mathematicae Universitatis Carolinae
%D 2008
%P 677-692
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2008__49_4_a12/
%G en
%F CMUC_2008__49_4_a12
Hernández, Constancio; Tkachenko, Mikhail. The Lindelöf property and pseudo-$\aleph_1$-compactness in spaces and topological groups. Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 4, pp. 677-692. http://geodesic.mathdoc.fr/item/CMUC_2008__49_4_a12/