How sensitive is $C_p(X,Y)$ to changes in $X$ and/or $Y$?
Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 4, pp. 657-665
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We investigate how the Lindelöf property of the function space $C_p(X,Y)$ is influenced by slight changes in $X$ and/or $Y$.
@article{CMUC_2008__49_4_a10,
author = {Buzyakova, Raushan Z.},
title = {How sensitive is $C_p(X,Y)$ to changes in $X$ and/or $Y$?},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {657--665},
publisher = {mathdoc},
volume = {49},
number = {4},
year = {2008},
mrnumber = {2493945},
zbl = {1212.54051},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2008__49_4_a10/}
}
TY - JOUR AU - Buzyakova, Raushan Z. TI - How sensitive is $C_p(X,Y)$ to changes in $X$ and/or $Y$? JO - Commentationes Mathematicae Universitatis Carolinae PY - 2008 SP - 657 EP - 665 VL - 49 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2008__49_4_a10/ LA - en ID - CMUC_2008__49_4_a10 ER -
Buzyakova, Raushan Z. How sensitive is $C_p(X,Y)$ to changes in $X$ and/or $Y$?. Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 4, pp. 657-665. http://geodesic.mathdoc.fr/item/CMUC_2008__49_4_a10/