On groups of similitudes in associative rings
Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 4, pp. 525-531
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $R$ be an associative ring with 1 and $R^{\times}$ the multiplicative group of invertible elements of $R$. In the paper, subgroups of $R^{\times}$ which may be regarded as analogues of the similitude group of a non-degenerate sesquilinear reflexive form and of the isometry group of such a form are defined in an abstract way. The main result states that a unipotent abstractly defined similitude must belong to the corresponding abstractly defined isometry group.
@article{CMUC_2008__49_4_a0,
author = {Bashkirov, Evgenii L.},
title = {On groups of similitudes in associative rings},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {525--531},
publisher = {mathdoc},
volume = {49},
number = {4},
year = {2008},
mrnumber = {2493935},
zbl = {1192.16034},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2008__49_4_a0/}
}
Bashkirov, Evgenii L. On groups of similitudes in associative rings. Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 4, pp. 525-531. http://geodesic.mathdoc.fr/item/CMUC_2008__49_4_a0/