On groups of similitudes in associative rings
Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 4, pp. 525-531.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $R$ be an associative ring with 1 and $R^{\times}$ the multiplicative group of invertible elements of $R$. In the paper, subgroups of $R^{\times}$ which may be regarded as analogues of the similitude group of a non-degenerate sesquilinear reflexive form and of the isometry group of such a form are defined in an abstract way. The main result states that a unipotent abstractly defined similitude must belong to the corresponding abstractly defined isometry group.
Classification : 16U60, 20H25
Keywords: associative rings; unipotent elements
@article{CMUC_2008__49_4_a0,
     author = {Bashkirov, Evgenii L.},
     title = {On groups of similitudes in associative rings},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {525--531},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2008},
     mrnumber = {2493935},
     zbl = {1192.16034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2008__49_4_a0/}
}
TY  - JOUR
AU  - Bashkirov, Evgenii L.
TI  - On groups of similitudes in associative rings
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2008
SP  - 525
EP  - 531
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2008__49_4_a0/
LA  - en
ID  - CMUC_2008__49_4_a0
ER  - 
%0 Journal Article
%A Bashkirov, Evgenii L.
%T On groups of similitudes in associative rings
%J Commentationes Mathematicae Universitatis Carolinae
%D 2008
%P 525-531
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2008__49_4_a0/
%G en
%F CMUC_2008__49_4_a0
Bashkirov, Evgenii L. On groups of similitudes in associative rings. Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 4, pp. 525-531. http://geodesic.mathdoc.fr/item/CMUC_2008__49_4_a0/