On $\omega$-resolvable and almost-$\omega$-resolvable spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 3, pp. 485-508
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We continue the study of almost-$\omega$-resolvable spaces beginning in A. Tamariz-Mascar'ua, H. Villegas-Rodr'{\i}guez, {\it Spaces of continuous functions, box products and almost-$\omega$-resoluble spaces\/}, Comment. Math. Univ. Carolin. {\bf 43} (2002), no. 4, 687--705. We prove in ZFC: (1) every crowded $T_0$ space with countable tightness and every $T_1$ space with $\pi$-weight $\leq \aleph _1$ is hereditarily almost-$\omega$-resolvable, (2) every crowded paracompact $T_2$ space which is the closed preimage of a crowded Fréchet $T_2$ space in such a way that the crowded part of each fiber is $\omega$-resolvable, has this property too, and (3) every Baire dense-hereditarily almost-$\omega$-resolvable space is $\omega$-resolvable. Moreover, by using the concept of almost-$\omega$-resolvability, we obtain two results due the first one to O. Pavlov and the other to V.I. Malykhin: (1) $V = L$ implies that every crowded Baire space is $\omega$-resolvable, and (2) $V = L$ implies that the product of two crowded spaces is resolvable. Finally, we prove that the product of two almost resolvable spaces is resolvable.
Classification :
54A10, 54A35, 54C05, 54D10, 54E52
Keywords: Baire spaces; resolvable spaces; almost resolvable spaces; almost-$\omega$-resolvable spaces; tightness; $\pi$-weight
Keywords: Baire spaces; resolvable spaces; almost resolvable spaces; almost-$\omega$-resolvable spaces; tightness; $\pi$-weight
@article{CMUC_2008__49_3_a9,
author = {Angoa, J. and Ibarra, M. and Tamariz-Mascar\'ua, A.},
title = {On $\omega$-resolvable and almost-$\omega$-resolvable spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {485--508},
publisher = {mathdoc},
volume = {49},
number = {3},
year = {2008},
mrnumber = {2490442},
zbl = {1212.54069},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2008__49_3_a9/}
}
TY - JOUR AU - Angoa, J. AU - Ibarra, M. AU - Tamariz-Mascarúa, A. TI - On $\omega$-resolvable and almost-$\omega$-resolvable spaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 2008 SP - 485 EP - 508 VL - 49 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2008__49_3_a9/ LA - en ID - CMUC_2008__49_3_a9 ER -
%0 Journal Article %A Angoa, J. %A Ibarra, M. %A Tamariz-Mascarúa, A. %T On $\omega$-resolvable and almost-$\omega$-resolvable spaces %J Commentationes Mathematicae Universitatis Carolinae %D 2008 %P 485-508 %V 49 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_2008__49_3_a9/ %G en %F CMUC_2008__49_3_a9
Angoa, J.; Ibarra, M.; Tamariz-Mascarúa, A. On $\omega$-resolvable and almost-$\omega$-resolvable spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 3, pp. 485-508. http://geodesic.mathdoc.fr/item/CMUC_2008__49_3_a9/