Quenching for semidiscretizations of a semilinear heat equation with Dirichlet and Neumann boundary conditions
Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 3, pp. 463-475.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This paper concerns the study of the numerical approximation for the following boundary value problem: $$ \cases u_t(x,t)-u_{xx}(x,t) = -u^{-p}(x,t), 01, t>0, \ u_{x}(0,t)=0, u(1,t)=1, t>0, \ u(x,0)=u_{0}(x)>0, 0\leq x \leq 1, \endcases $$ where $p>0$. We obtain some conditions under which the solution of a semidiscrete form of the above problem quenches in a finite time and estimate its semidiscrete quenching time. We also establish the convergence of the semidiscrete quenching time. Finally, we give some numerical experiments to illustrate our analysis.
Classification : 35B40, 35K20, 35K55, 35K91, 65M06
Keywords: semidiscretizations; discretizations; heat equations; quenching; semidiscrete quenching time; convergence
@article{CMUC_2008__49_3_a7,
     author = {Nabongo, Diabate and Boni, Th\'eodore K.},
     title = {Quenching for semidiscretizations of a semilinear heat equation with {Dirichlet} and {Neumann} boundary conditions},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {463--475},
     publisher = {mathdoc},
     volume = {49},
     number = {3},
     year = {2008},
     mrnumber = {2490440},
     zbl = {1212.35217},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2008__49_3_a7/}
}
TY  - JOUR
AU  - Nabongo, Diabate
AU  - Boni, Théodore K.
TI  - Quenching for semidiscretizations of a semilinear heat equation with Dirichlet and Neumann boundary conditions
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2008
SP  - 463
EP  - 475
VL  - 49
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2008__49_3_a7/
LA  - en
ID  - CMUC_2008__49_3_a7
ER  - 
%0 Journal Article
%A Nabongo, Diabate
%A Boni, Théodore K.
%T Quenching for semidiscretizations of a semilinear heat equation with Dirichlet and Neumann boundary conditions
%J Commentationes Mathematicae Universitatis Carolinae
%D 2008
%P 463-475
%V 49
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2008__49_3_a7/
%G en
%F CMUC_2008__49_3_a7
Nabongo, Diabate; Boni, Théodore K. Quenching for semidiscretizations of a semilinear heat equation with Dirichlet and Neumann boundary conditions. Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 3, pp. 463-475. http://geodesic.mathdoc.fr/item/CMUC_2008__49_3_a7/