Product of vector measures on topological spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 3, pp. 421-435
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For $i=(1,2)$, let $X_{i}$ be completely regular Hausdorff spaces, $E_{i}$ quasi-complete locally convex spaces, $E=E_{1}\Breve{\otimes }E_{2}$, the completion of the their injective tensor product, $C_{b}(X_{i})$ the spaces of all bounded, scalar-valued continuous functions on $X_{i}$, and $\mu_{i}$ $E_{i}$-valued Baire measures on $X_{i}$. Under certain conditions we determine the existence of the $E$-valued product measure $\mu_{1}\otimes \mu_{2}$ and prove some properties of these measures.
Classification :
28B05, 28C05, 28C15, 46A08, 46E10, 46G10, 46G12, 60B05
Keywords: injective tensor product; product of measures; tight measures; $\tau$-smooth measures; separable measures; Fubini theorem
Keywords: injective tensor product; product of measures; tight measures; $\tau$-smooth measures; separable measures; Fubini theorem
@article{CMUC_2008__49_3_a4,
author = {Khurana, Surjit Singh},
title = {Product of vector measures on topological spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {421--435},
publisher = {mathdoc},
volume = {49},
number = {3},
year = {2008},
mrnumber = {2490437},
zbl = {1212.46064},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2008__49_3_a4/}
}
Khurana, Surjit Singh. Product of vector measures on topological spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 3, pp. 421-435. http://geodesic.mathdoc.fr/item/CMUC_2008__49_3_a4/