Product of vector measures on topological spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 3, pp. 421-435.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For $i=(1,2)$, let $X_{i}$ be completely regular Hausdorff spaces, $E_{i}$ quasi-complete locally convex spaces, $E=E_{1}\Breve{\otimes }E_{2}$, the completion of the their injective tensor product, $C_{b}(X_{i})$ the spaces of all bounded, scalar-valued continuous functions on $X_{i}$, and $\mu_{i}$ $E_{i}$-valued Baire measures on $X_{i}$. Under certain conditions we determine the existence of the $E$-valued product measure $\mu_{1}\otimes \mu_{2}$ and prove some properties of these measures.
Classification : 28B05, 28C05, 28C15, 46A08, 46E10, 46G10, 46G12, 60B05
Keywords: injective tensor product; product of measures; tight measures; $\tau$-smooth measures; separable measures; Fubini theorem
@article{CMUC_2008__49_3_a4,
     author = {Khurana, Surjit Singh},
     title = {Product of vector measures on topological spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {421--435},
     publisher = {mathdoc},
     volume = {49},
     number = {3},
     year = {2008},
     mrnumber = {2490437},
     zbl = {1212.46064},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2008__49_3_a4/}
}
TY  - JOUR
AU  - Khurana, Surjit Singh
TI  - Product of vector measures on topological spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2008
SP  - 421
EP  - 435
VL  - 49
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2008__49_3_a4/
LA  - en
ID  - CMUC_2008__49_3_a4
ER  - 
%0 Journal Article
%A Khurana, Surjit Singh
%T Product of vector measures on topological spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2008
%P 421-435
%V 49
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2008__49_3_a4/
%G en
%F CMUC_2008__49_3_a4
Khurana, Surjit Singh. Product of vector measures on topological spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 3, pp. 421-435. http://geodesic.mathdoc.fr/item/CMUC_2008__49_3_a4/