Biembeddings of symmetric configurations and 3-homogeneous Latin trades
Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 3, pp. 411-420.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Using results of Altshuler and Negami, we present a classification of biembeddings of symmetric configurations of triples in the torus or Klein bottle. We also give an alternative proof of the structure of 3-homogeneous Latin trades.
Classification : 05B15, 05B30, 05C10
Keywords: topological embedding; torus; Klein bottle; 6-regular graph; symmetric configuration of triples; partial Latin square; 3-homogeneous Latin trade
@article{CMUC_2008__49_3_a3,
     author = {Grannell, M. J. and Griggs, T. S. and Knor, M.},
     title = {Biembeddings of symmetric configurations and 3-homogeneous {Latin} trades},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {411--420},
     publisher = {mathdoc},
     volume = {49},
     number = {3},
     year = {2008},
     mrnumber = {2490436},
     zbl = {1212.05053},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2008__49_3_a3/}
}
TY  - JOUR
AU  - Grannell, M. J.
AU  - Griggs, T. S.
AU  - Knor, M.
TI  - Biembeddings of symmetric configurations and 3-homogeneous Latin trades
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2008
SP  - 411
EP  - 420
VL  - 49
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2008__49_3_a3/
LA  - en
ID  - CMUC_2008__49_3_a3
ER  - 
%0 Journal Article
%A Grannell, M. J.
%A Griggs, T. S.
%A Knor, M.
%T Biembeddings of symmetric configurations and 3-homogeneous Latin trades
%J Commentationes Mathematicae Universitatis Carolinae
%D 2008
%P 411-420
%V 49
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2008__49_3_a3/
%G en
%F CMUC_2008__49_3_a3
Grannell, M. J.; Griggs, T. S.; Knor, M. Biembeddings of symmetric configurations and 3-homogeneous Latin trades. Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 3, pp. 411-420. http://geodesic.mathdoc.fr/item/CMUC_2008__49_3_a3/