A class of commutative loops with metacyclic inner mapping groups
Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 3, pp. 357-382.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We investigate loops defined upon the product $\Bbb Z_m\times \Bbb Z_k$ by the formula $(a,i)(b,j) = ((a+b)/(1+tf^i(0)f^j(0)), i + j)$, where $f(x) = (sx + 1)/(tx+1)$, for appropriate parameters $s,t \in \Bbb Z_m^*$. Each such loop is coupled to a 2-cocycle (in the group-theoretical sense) and this connection makes it possible to prove that the loop possesses a metacyclic inner mapping group. If $s=1$, then the loop is an A-loop. Questions of isotopism and isomorphism are considered in detail.
Classification : 08A05, 20N05
Keywords: A-loop; nucleus; inner mapping group; cocycle; linear fractional
@article{CMUC_2008__49_3_a0,
     author = {Dr\'apal, Ale\v{s}},
     title = {A class of commutative loops with metacyclic inner mapping groups},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {357--382},
     publisher = {mathdoc},
     volume = {49},
     number = {3},
     year = {2008},
     mrnumber = {2490433},
     zbl = {1192.20053},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2008__49_3_a0/}
}
TY  - JOUR
AU  - Drápal, Aleš
TI  - A class of commutative loops with metacyclic inner mapping groups
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2008
SP  - 357
EP  - 382
VL  - 49
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2008__49_3_a0/
LA  - en
ID  - CMUC_2008__49_3_a0
ER  - 
%0 Journal Article
%A Drápal, Aleš
%T A class of commutative loops with metacyclic inner mapping groups
%J Commentationes Mathematicae Universitatis Carolinae
%D 2008
%P 357-382
%V 49
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2008__49_3_a0/
%G en
%F CMUC_2008__49_3_a0
Drápal, Aleš. A class of commutative loops with metacyclic inner mapping groups. Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 3, pp. 357-382. http://geodesic.mathdoc.fr/item/CMUC_2008__49_3_a0/