On central nilpotency in finite loops with nilpotent inner mapping groups
Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 2, pp. 271-277.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we consider finite loops whose inner mapping groups are nilpotent. We first consider the case where the inner mapping group $I(Q)$ of a loop $Q$ is the direct product of a dihedral group of order $8$ and an abelian group. Our second result deals with the case where $Q$ is a $2$-loop and $I(Q)$ is a nilpotent group whose nonabelian Sylow subgroups satisfy a special condition. In both cases it turns out that $Q$ is centrally nilpotent.
Classification : 20D10, 20D15, 20D35, 20N05
Keywords: loop; group; connected transversals
@article{CMUC_2008__49_2_a8,
     author = {Niemenmaa, Markku and Rytty, Miikka},
     title = {On central nilpotency in finite loops with nilpotent inner mapping groups},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {271--277},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2008},
     mrnumber = {2426891},
     zbl = {1192.20057},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a8/}
}
TY  - JOUR
AU  - Niemenmaa, Markku
AU  - Rytty, Miikka
TI  - On central nilpotency in finite loops with nilpotent inner mapping groups
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2008
SP  - 271
EP  - 277
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a8/
LA  - en
ID  - CMUC_2008__49_2_a8
ER  - 
%0 Journal Article
%A Niemenmaa, Markku
%A Rytty, Miikka
%T On central nilpotency in finite loops with nilpotent inner mapping groups
%J Commentationes Mathematicae Universitatis Carolinae
%D 2008
%P 271-277
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a8/
%G en
%F CMUC_2008__49_2_a8
Niemenmaa, Markku; Rytty, Miikka. On central nilpotency in finite loops with nilpotent inner mapping groups. Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 2, pp. 271-277. http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a8/