F-quasigroups and generalized modules
Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 2, pp. 249-257.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In Kepka T., Kinyon M.K., Phillips J.D., {\it The structure of F-quasigroups\/}, J. Algebra {\bf 317} (2007), 435--461, we showed that every F-quasigroup is linear over a special kind of Moufang loop called an NK-loop. Here we extend this relationship by showing an equivalence between the class of (pointed) F-quasigroups and the class corresponding to a certain notion of generalized module (with noncommutative, nonassociative addition) for an associative ring.
Classification : 16Y99, 17A30, 20N05
Keywords: F-quasigroup; Moufang loop; generalized modules
@article{CMUC_2008__49_2_a6,
     author = {Kepka, Tom\'a\v{s} and Kinyon, Michael K. and Phillips, J. D.},
     title = {F-quasigroups and generalized modules},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {249--257},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2008},
     mrnumber = {2426889},
     zbl = {1192.20055},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a6/}
}
TY  - JOUR
AU  - Kepka, Tomáš
AU  - Kinyon, Michael K.
AU  - Phillips, J. D.
TI  - F-quasigroups and generalized modules
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2008
SP  - 249
EP  - 257
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a6/
LA  - en
ID  - CMUC_2008__49_2_a6
ER  - 
%0 Journal Article
%A Kepka, Tomáš
%A Kinyon, Michael K.
%A Phillips, J. D.
%T F-quasigroups and generalized modules
%J Commentationes Mathematicae Universitatis Carolinae
%D 2008
%P 249-257
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a6/
%G en
%F CMUC_2008__49_2_a6
Kepka, Tomáš; Kinyon, Michael K.; Phillips, J. D. F-quasigroups and generalized modules. Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 2, pp. 249-257. http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a6/