When is it hard to show that a quasigroup is a loop?
Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 2, pp. 241-247.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We contrast the simple proof that a quasigroup which satisfies the Moufang identity $(x\cdot yz)x = xy\cdot zx$ is necessarily a loop (Moufang loop) with the remarkably involved prof that a quasigroup which satisfies the Moufang identity $(xy\cdot z)y=x(y\cdot zy)$ is likewise necessarily a Moufang loop and attempt to explain why the proofs are so different in complexity.
Classification : 20N05
Keywords: Moufang quasigroups; Moufang loops; identities of Bol-Moufang type
@article{CMUC_2008__49_2_a5,
     author = {Keedwell, A. D.},
     title = {When is it hard to show that a quasigroup is a loop?},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {241--247},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2008},
     mrnumber = {2426888},
     zbl = {1192.20054},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a5/}
}
TY  - JOUR
AU  - Keedwell, A. D.
TI  - When is it hard to show that a quasigroup is a loop?
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2008
SP  - 241
EP  - 247
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a5/
LA  - en
ID  - CMUC_2008__49_2_a5
ER  - 
%0 Journal Article
%A Keedwell, A. D.
%T When is it hard to show that a quasigroup is a loop?
%J Commentationes Mathematicae Universitatis Carolinae
%D 2008
%P 241-247
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a5/
%G en
%F CMUC_2008__49_2_a5
Keedwell, A. D. When is it hard to show that a quasigroup is a loop?. Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 2, pp. 241-247. http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a5/