When is it hard to show that a quasigroup is a loop?
Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 2, pp. 241-247
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We contrast the simple proof that a quasigroup which satisfies the Moufang identity $(x\cdot yz)x = xy\cdot zx$ is necessarily a loop (Moufang loop) with the remarkably involved prof that a quasigroup which satisfies the Moufang identity $(xy\cdot z)y=x(y\cdot zy)$ is likewise necessarily a Moufang loop and attempt to explain why the proofs are so different in complexity.
Classification :
20N05
Keywords: Moufang quasigroups; Moufang loops; identities of Bol-Moufang type
Keywords: Moufang quasigroups; Moufang loops; identities of Bol-Moufang type
@article{CMUC_2008__49_2_a5,
author = {Keedwell, A. D.},
title = {When is it hard to show that a quasigroup is a loop?},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {241--247},
publisher = {mathdoc},
volume = {49},
number = {2},
year = {2008},
mrnumber = {2426888},
zbl = {1192.20054},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a5/}
}
Keedwell, A. D. When is it hard to show that a quasigroup is a loop?. Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 2, pp. 241-247. http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a5/