On loops that are abelian groups over the nucleus and Buchsteiner loops
Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 2, pp. 197-208.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We give sufficient and in some cases necessary conditions for the conjugacy closedness of $Q/Z(Q)$ provided the commutativity of $Q/N$. We show that if for some loop $Q$, $Q/N$ and $\operatorname{Inn} Q$ are abelian groups, then $Q/Z(Q)$ is a CC loop, consequently $Q$ has nilpotency class at most three. We give additionally some reasonable conditions which imply the nilpotency of the multiplication group of class at most three. We describe the structure of Buchsteiner loops with abelian inner mapping groups.
Classification : 20D10, 20D15, 20N05
Keywords: conjugacy closed loops; Buchsteiner loops
@article{CMUC_2008__49_2_a2,
     author = {Cs\"org\"o, Piroska},
     title = {On loops that are abelian groups over the nucleus and {Buchsteiner} loops},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {197--208},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2008},
     mrnumber = {2426885},
     zbl = {1192.20052},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a2/}
}
TY  - JOUR
AU  - Csörgö, Piroska
TI  - On loops that are abelian groups over the nucleus and Buchsteiner loops
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2008
SP  - 197
EP  - 208
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a2/
LA  - en
ID  - CMUC_2008__49_2_a2
ER  - 
%0 Journal Article
%A Csörgö, Piroska
%T On loops that are abelian groups over the nucleus and Buchsteiner loops
%J Commentationes Mathematicae Universitatis Carolinae
%D 2008
%P 197-208
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a2/
%G en
%F CMUC_2008__49_2_a2
Csörgö, Piroska. On loops that are abelian groups over the nucleus and Buchsteiner loops. Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 2, pp. 197-208. http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a2/