Möbius gyrovector spaces in quantum information and computation
Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 2, pp. 341-356.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Hyperbolic vectors, called gyrovectors, share analogies with vectors in Euclidean geometry. It is emphasized that the Bloch vector of Quantum Information and Computation (QIC) is, in fact, a gyrovector related to Möbius addition rather than a vector. The decomplexification of Möbius addition in the complex open unit disc of a complex plane into an equivalent real Möbius addition in the open unit ball $\Bbb B^2$ of a Euclidean 2-space $\Bbb R^2$ is presented. This decomplexification proves useful, enabling the resulting real Möbius addition to be generalized into the open unit ball $\Bbb B^n$ of a Euclidean $n$-space $\Bbb R^n$ for all $n\ge2$. Similarly, the decomplexification of the complex $2\times 2$ qubit density matrix of QIC, which is parametrized by the real, 3-dimensional Bloch gyrovector, into an equivalent (in a specified sense) real $4\times 4$ matrix is presented. As in the case of Möbius addition, this decomplexification proves useful, enabling the resulting real matrix to be generalized into a corresponding matrix parametrized by a real, $n$-dimensional Bloch gyrovector, for all $n\ge 2$. The applicability of the $n$-dimensional Bloch gyrovector with $n=3$ to QIC is well known. The problem as to whether the $n$-dimensional Bloch gyrovector with $n>3$ is applicable to QIC as well remains to be explored.
Classification : 51M10, 51P05, 81P15, 81P68
Keywords: quantum information; Bloch vector; density matrix; hyperbolic geometry; gyrogroups; gyrovector spaces
@article{CMUC_2008__49_2_a14,
     author = {Ungar, Abraham A.},
     title = {M\"obius gyrovector spaces in quantum information and computation},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {341--356},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2008},
     mrnumber = {2426897},
     zbl = {1212.51013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a14/}
}
TY  - JOUR
AU  - Ungar, Abraham A.
TI  - Möbius gyrovector spaces in quantum information and computation
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2008
SP  - 341
EP  - 356
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a14/
LA  - en
ID  - CMUC_2008__49_2_a14
ER  - 
%0 Journal Article
%A Ungar, Abraham A.
%T Möbius gyrovector spaces in quantum information and computation
%J Commentationes Mathematicae Universitatis Carolinae
%D 2008
%P 341-356
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a14/
%G en
%F CMUC_2008__49_2_a14
Ungar, Abraham A. Möbius gyrovector spaces in quantum information and computation. Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 2, pp. 341-356. http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a14/