Ternary quasigroups and the modular group
Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 2, pp. 309-317
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For a positive integer $n$, the usual definitions of $n$-quasigroups are rather complicated: either by combinatorial conditions that effectively amount to Latin $n$-cubes, or by $2n$ identities on $n+1$ different $n$-ary operations. In this paper, a more symmetrical approach to the specification of $n$-quasigroups is considered. In particular, ternary quasigroups arise from actions of the modular group.
Classification :
08A68, 20N05, 20N15, 20N20
Keywords: quasigroup; ternary quasigroup; $n$-quasigroup; heterogeneous algebra; hyperidentity; modular group; conjugate; parastrophe; time reversal
Keywords: quasigroup; ternary quasigroup; $n$-quasigroup; heterogeneous algebra; hyperidentity; modular group; conjugate; parastrophe; time reversal
@article{CMUC_2008__49_2_a12,
author = {Smith, Jonathan D. H.},
title = {Ternary quasigroups and the modular group},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {309--317},
publisher = {mathdoc},
volume = {49},
number = {2},
year = {2008},
mrnumber = {2426895},
zbl = {1192.20064},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a12/}
}
Smith, Jonathan D. H. Ternary quasigroups and the modular group. Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 2, pp. 309-317. http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a12/