Moufang loops of odd order $p_1p_2\dots p_nq^3$ with non-trivial nucleus
Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 2, pp. 301-307
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
It has been proven by F. Leong and the first author (J. Algebra {\bf 190} (1997), 474--486) that all Moufang loops of order $p^\alpha q_1^{\beta_1}q_2^{\beta_2}\cdot \cdot \cdot q_n^{\beta_n}$ where $p$ and $q_i$ are odd primes, are associative if $p$, and \roster \item"(i)" $\alpha\leq 3$, $\beta_i\leq 2$; or \item"(ii)" $p\geq 5$, $\alpha\leq 4$, $\beta_i\leq2$. \endroster The first author also proved that if $p$ and $q$ are distinct odd primes, then all Moufang loops of order $pq^3$ are associative if and only if $q\not\equiv 1(\text{\rm mod}\, p)$ (J. Algebra {\bf 235} (2001), 66--93). In this paper, we prove that all Moufang loops of order $p_1p_2\cdot \cdot \cdot p_nq^3$ where $p_i$ and $q$ are odd primes, are associative if $p_1$, $q\not\equiv 1(\text{\rm mod}\, p_i)$, $p_i\not\equiv 1(\text{\rm mod}\, p_j)$ and the nucleus is not trivial.
@article{CMUC_2008__49_2_a11,
author = {Rajah, Andrew and Chong, Kam-Yoon},
title = {Moufang loops of odd order $p_1p_2\dots p_nq^3$ with non-trivial nucleus},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {301--307},
publisher = {mathdoc},
volume = {49},
number = {2},
year = {2008},
mrnumber = {2426894},
zbl = {1192.20061},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a11/}
}
TY - JOUR AU - Rajah, Andrew AU - Chong, Kam-Yoon TI - Moufang loops of odd order $p_1p_2\dots p_nq^3$ with non-trivial nucleus JO - Commentationes Mathematicae Universitatis Carolinae PY - 2008 SP - 301 EP - 307 VL - 49 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a11/ LA - en ID - CMUC_2008__49_2_a11 ER -
%0 Journal Article %A Rajah, Andrew %A Chong, Kam-Yoon %T Moufang loops of odd order $p_1p_2\dots p_nq^3$ with non-trivial nucleus %J Commentationes Mathematicae Universitatis Carolinae %D 2008 %P 301-307 %V 49 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a11/ %G en %F CMUC_2008__49_2_a11
Rajah, Andrew; Chong, Kam-Yoon. Moufang loops of odd order $p_1p_2\dots p_nq^3$ with non-trivial nucleus. Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 2, pp. 301-307. http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a11/