Moufang loops of odd order $p_1p_2\dots p_nq^3$ with non-trivial nucleus
Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 2, pp. 301-307.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It has been proven by F. Leong and the first author (J. Algebra {\bf 190} (1997), 474--486) that all Moufang loops of order $p^\alpha q_1^{\beta_1}q_2^{\beta_2}\cdot \cdot \cdot q_n^{\beta_n}$ where $p$ and $q_i$ are odd primes, are associative if $p$, and \roster \item"(i)" $\alpha\leq 3$, $\beta_i\leq 2$; or \item"(ii)" $p\geq 5$, $\alpha\leq 4$, $\beta_i\leq2$. \endroster The first author also proved that if $p$ and $q$ are distinct odd primes, then all Moufang loops of order $pq^3$ are associative if and only if $q\not\equiv 1(\text{\rm mod}\, p)$ (J. Algebra {\bf 235} (2001), 66--93). In this paper, we prove that all Moufang loops of order $p_1p_2\cdot \cdot \cdot p_nq^3$ where $p_i$ and $q$ are odd primes, are associative if $p_1$, $q\not\equiv 1(\text{\rm mod}\, p_i)$, $p_i\not\equiv 1(\text{\rm mod}\, p_j)$ and the nucleus is not trivial.
Classification : 20N05
Keywords: Moufang loop; order; nonassociative
@article{CMUC_2008__49_2_a11,
     author = {Rajah, Andrew and Chong, Kam-Yoon},
     title = {Moufang loops of odd order $p_1p_2\dots p_nq^3$ with non-trivial nucleus},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {301--307},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2008},
     mrnumber = {2426894},
     zbl = {1192.20061},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a11/}
}
TY  - JOUR
AU  - Rajah, Andrew
AU  - Chong, Kam-Yoon
TI  - Moufang loops of odd order $p_1p_2\dots p_nq^3$ with non-trivial nucleus
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2008
SP  - 301
EP  - 307
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a11/
LA  - en
ID  - CMUC_2008__49_2_a11
ER  - 
%0 Journal Article
%A Rajah, Andrew
%A Chong, Kam-Yoon
%T Moufang loops of odd order $p_1p_2\dots p_nq^3$ with non-trivial nucleus
%J Commentationes Mathematicae Universitatis Carolinae
%D 2008
%P 301-307
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a11/
%G en
%F CMUC_2008__49_2_a11
Rajah, Andrew; Chong, Kam-Yoon. Moufang loops of odd order $p_1p_2\dots p_nq^3$ with non-trivial nucleus. Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 2, pp. 301-307. http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a11/