Powers of elements in Jordan loops
Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 2, pp. 291-299
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A Jordan loop is a commutative loop satisfying the Jordan identity $(x^2 y)x = x^2(y x)$. We establish several identities involving powers in Jordan loops and show that there is no nonassociative Jordan loop of order $9$.
Classification :
20N05
Keywords: Jordan loop; Jordan quasigroup; well-defined powers; nonassociative loop; order of a loop
Keywords: Jordan loop; Jordan quasigroup; well-defined powers; nonassociative loop; order of a loop
@article{CMUC_2008__49_2_a10,
author = {Pula, Kyle},
title = {Powers of elements in {Jordan} loops},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {291--299},
publisher = {mathdoc},
volume = {49},
number = {2},
year = {2008},
mrnumber = {2426893},
zbl = {1192.20060},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a10/}
}
Pula, Kyle. Powers of elements in Jordan loops. Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 2, pp. 291-299. http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a10/