Powers of elements in Jordan loops
Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 2, pp. 291-299.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A Jordan loop is a commutative loop satisfying the Jordan identity $(x^2 y)x = x^2(y x)$. We establish several identities involving powers in Jordan loops and show that there is no nonassociative Jordan loop of order $9$.
Classification : 20N05
Keywords: Jordan loop; Jordan quasigroup; well-defined powers; nonassociative loop; order of a loop
@article{CMUC_2008__49_2_a10,
     author = {Pula, Kyle},
     title = {Powers of elements in {Jordan} loops},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {291--299},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2008},
     mrnumber = {2426893},
     zbl = {1192.20060},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a10/}
}
TY  - JOUR
AU  - Pula, Kyle
TI  - Powers of elements in Jordan loops
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2008
SP  - 291
EP  - 299
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a10/
LA  - en
ID  - CMUC_2008__49_2_a10
ER  - 
%0 Journal Article
%A Pula, Kyle
%T Powers of elements in Jordan loops
%J Commentationes Mathematicae Universitatis Carolinae
%D 2008
%P 291-299
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a10/
%G en
%F CMUC_2008__49_2_a10
Pula, Kyle. Powers of elements in Jordan loops. Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 2, pp. 291-299. http://geodesic.mathdoc.fr/item/CMUC_2008__49_2_a10/