Manifolds admitting stable forms
Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 1, pp. 101-117
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this note we give a direct method to classify all stable forms on $\Bbb R^n$ as well as to determine their automorphism groups. We show that in dimensions 6, 7, 8 stable forms coincide with non-degenerate forms. We present necessary conditions and sufficient conditions for a manifold to admit a stable form. We also discuss rich properties of the geometry of such manifolds.
@article{CMUC_2008__49_1_a9,
author = {L\^e, H\^ong-Van and Pan\'ak, Martin and Van\v{z}ura, Ji\v{r}{\'\i}},
title = {Manifolds admitting stable forms},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {101--117},
publisher = {mathdoc},
volume = {49},
number = {1},
year = {2008},
mrnumber = {2433628},
zbl = {1212.53051},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2008__49_1_a9/}
}
TY - JOUR AU - Lê, Hông-Van AU - Panák, Martin AU - Vanžura, Jiří TI - Manifolds admitting stable forms JO - Commentationes Mathematicae Universitatis Carolinae PY - 2008 SP - 101 EP - 117 VL - 49 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2008__49_1_a9/ LA - en ID - CMUC_2008__49_1_a9 ER -
Lê, Hông-Van; Panák, Martin; Vanžura, Jiří. Manifolds admitting stable forms. Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 1, pp. 101-117. http://geodesic.mathdoc.fr/item/CMUC_2008__49_1_a9/