Mapping theorems on $\aleph$-spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 1, pp. 163-167.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we improve some mapping theorems on $\aleph$-spaces. For instance we show that an $\aleph$-space is preserved by a closed and countably bi-quotient map. This is an improvement of Yun Ziqiu's theorem: an $\aleph$-space is preserved by a closed and open map.
Classification : 54C10, 54E18
Keywords: $\aleph$-space; $k$-network; closed map; countably bi-quotient map
@article{CMUC_2008__49_1_a15,
     author = {Sakai, Masami},
     title = {Mapping theorems on $\aleph$-spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {163--167},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {2008},
     mrnumber = {2433634},
     zbl = {1212.54049},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2008__49_1_a15/}
}
TY  - JOUR
AU  - Sakai, Masami
TI  - Mapping theorems on $\aleph$-spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2008
SP  - 163
EP  - 167
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2008__49_1_a15/
LA  - en
ID  - CMUC_2008__49_1_a15
ER  - 
%0 Journal Article
%A Sakai, Masami
%T Mapping theorems on $\aleph$-spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2008
%P 163-167
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2008__49_1_a15/
%G en
%F CMUC_2008__49_1_a15
Sakai, Masami. Mapping theorems on $\aleph$-spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 49 (2008) no. 1, pp. 163-167. http://geodesic.mathdoc.fr/item/CMUC_2008__49_1_a15/