Interior regularity of weak solutions to the equations of a stationary motion of a non-Newtonian fluid with shear-dependent viscosity. The case $q=\frac{3d}{d+2}$
Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 4, pp. 659-668.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we consider weak solutions ${\bold u}: \Omega \rightarrow \Bbb R^d$ to the equations of stationary motion of a fluid with shear dependent viscosity in a bounded domain $\Omega \subset \Bbb R^d$ ($d=2$ or $d=3$). For the critical case $q=\frac{3d}{d+2}$ we prove the higher integrability of $\nabla {\bold u}$ which forms the basis for applying the method of differences in order to get fractional differentiability of $\nabla {\bold u}$. From this we show the existence of second order weak derivatives of $u$.
Classification : 35B65, 35D10, 35D30, 35Q30, 35Q35, 76A05
Keywords: non-Newtonian fluids; weak solutions; interior regularity
@article{CMUC_2007__48_4_a8,
     author = {Wolf, J\"org},
     title = {Interior regularity of weak solutions to the equations of a stationary motion of a {non-Newtonian} fluid with shear-dependent viscosity. {The} case $q=\frac{3d}{d+2}$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {659--668},
     publisher = {mathdoc},
     volume = {48},
     number = {4},
     year = {2007},
     mrnumber = {2375166},
     zbl = {1199.35297},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2007__48_4_a8/}
}
TY  - JOUR
AU  - Wolf, Jörg
TI  - Interior regularity of weak solutions to the equations of a stationary motion of a non-Newtonian fluid with shear-dependent viscosity. The case $q=\frac{3d}{d+2}$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2007
SP  - 659
EP  - 668
VL  - 48
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2007__48_4_a8/
LA  - en
ID  - CMUC_2007__48_4_a8
ER  - 
%0 Journal Article
%A Wolf, Jörg
%T Interior regularity of weak solutions to the equations of a stationary motion of a non-Newtonian fluid with shear-dependent viscosity. The case $q=\frac{3d}{d+2}$
%J Commentationes Mathematicae Universitatis Carolinae
%D 2007
%P 659-668
%V 48
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2007__48_4_a8/
%G en
%F CMUC_2007__48_4_a8
Wolf, Jörg. Interior regularity of weak solutions to the equations of a stationary motion of a non-Newtonian fluid with shear-dependent viscosity. The case $q=\frac{3d}{d+2}$. Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 4, pp. 659-668. http://geodesic.mathdoc.fr/item/CMUC_2007__48_4_a8/