Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{CMUC_2007__48_4_a8, author = {Wolf, J\"org}, title = {Interior regularity of weak solutions to the equations of a stationary motion of a {non-Newtonian} fluid with shear-dependent viscosity. {The} case $q=\frac{3d}{d+2}$}, journal = {Commentationes Mathematicae Universitatis Carolinae}, pages = {659--668}, publisher = {mathdoc}, volume = {48}, number = {4}, year = {2007}, mrnumber = {2375166}, zbl = {1199.35297}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CMUC_2007__48_4_a8/} }
TY - JOUR AU - Wolf, Jörg TI - Interior regularity of weak solutions to the equations of a stationary motion of a non-Newtonian fluid with shear-dependent viscosity. The case $q=\frac{3d}{d+2}$ JO - Commentationes Mathematicae Universitatis Carolinae PY - 2007 SP - 659 EP - 668 VL - 48 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2007__48_4_a8/ LA - en ID - CMUC_2007__48_4_a8 ER -
%0 Journal Article %A Wolf, Jörg %T Interior regularity of weak solutions to the equations of a stationary motion of a non-Newtonian fluid with shear-dependent viscosity. The case $q=\frac{3d}{d+2}$ %J Commentationes Mathematicae Universitatis Carolinae %D 2007 %P 659-668 %V 48 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_2007__48_4_a8/ %G en %F CMUC_2007__48_4_a8
Wolf, Jörg. Interior regularity of weak solutions to the equations of a stationary motion of a non-Newtonian fluid with shear-dependent viscosity. The case $q=\frac{3d}{d+2}$. Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 4, pp. 659-668. http://geodesic.mathdoc.fr/item/CMUC_2007__48_4_a8/