Riesz spaces of order bounded disjointness preserving operators
Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 4, pp. 607-622.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $L$, $M$ be Archimedean Riesz spaces and $\Cal L_{b}(L,M)$ be the ordered vector space of all order bounded operators from $L$ into $M$. We define a Lamperti Riesz subspace of $\Cal L_{b}(L,M)$ to be an ordered vector subspace $\Cal L$ of $\Cal L_{b}(L,M)$ such that the elements of $\Cal L$ preserve disjointness and any pair of operators in $\Cal L$ has a supremum in $\Cal L_{b}(L,M)$ that belongs to $\Cal L$. It turns out that the lattice operations in any Lamperti Riesz subspace $\Cal L$ of $\Cal L_{b}(L,M)$ are given pointwise, which leads to a generalization of the classic Radon-Nikod'ym theorem for Riesz homomorphisms. We then introduce the notion of maximal Lamperti Riesz subspace of $\Cal L_{b}(L,M)$ as a generalization of orthomorphisms. In this regard, we show that any maximal Lamperti Riesz subspace of $\Cal L_{b}(L,M)$ is a band of $\Cal L_{b}(L,M)$, provided $M$ is Dedekind complete. Also, we extend standard transferability theorems for orthomorphisms to maximal Lamperti Riesz subspace of $\Cal L_{b}(L,M)$. Moreover, we give a complete description of maximal Lamperti Riesz subspaces on some continuous function spaces.
Classification : 06F20, 46A32, 46A40, 47B65
Keywords: continuous functions spaces; disjointness preserving operator; Lamperti Riesz subspace; order bounded operator; orthomorphism; Radon-Nikod'ym; Riesz space
@article{CMUC_2007__48_4_a4,
     author = {Amor, Fethi Ben},
     title = {Riesz spaces of order bounded disjointness preserving operators},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {607--622},
     publisher = {mathdoc},
     volume = {48},
     number = {4},
     year = {2007},
     mrnumber = {2375162},
     zbl = {1199.06071},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2007__48_4_a4/}
}
TY  - JOUR
AU  - Amor, Fethi Ben
TI  - Riesz spaces of order bounded disjointness preserving operators
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2007
SP  - 607
EP  - 622
VL  - 48
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2007__48_4_a4/
LA  - en
ID  - CMUC_2007__48_4_a4
ER  - 
%0 Journal Article
%A Amor, Fethi Ben
%T Riesz spaces of order bounded disjointness preserving operators
%J Commentationes Mathematicae Universitatis Carolinae
%D 2007
%P 607-622
%V 48
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2007__48_4_a4/
%G en
%F CMUC_2007__48_4_a4
Amor, Fethi Ben. Riesz spaces of order bounded disjointness preserving operators. Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 4, pp. 607-622. http://geodesic.mathdoc.fr/item/CMUC_2007__48_4_a4/