MAD families and $P$-points
Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 4, pp. 699-705.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The Katětov ordering of two maximal almost disjoint (MAD) families $\Cal A$ and $\Cal B$ is defined as follows: We say that $\Cal A\leq_K \Cal B$ if there is a function $f: \omega \to \omega$ such that $f^{-1}(A)\in \Cal I(\Cal B)$ for every $A\in \Cal I(\Cal A)$. In [Garcia-Ferreira S., Hru\v sák M., Ordering MAD families a la Katětov, J. Symbolic Logic 68 (2003), 1337–1353] a MAD family is called $K$-uniform if for every $X\in \Cal I(\Cal A)^+$, we have that $\Cal A|_X\leq_K \Cal A$. We prove that CH implies that for every $K$-uniform MAD family $\Cal A$ there is a $P$-point $p$ of $\omega^*$ such that the set of all Rudin-Keisler predecessors of $p$ is dense in the boundary of $\bigcup \Cal A^*$ as a subspace of the remainder $\beta (\omega )\setminus \omega $. This result has a nicer topological interpretation: The symbol $\Cal F(\Cal A)$ will denote the Franklin compact space associated to a MAD family $\Cal A$. Given an ultrafilter $p\in \beta(\omega)\setminus \omega$, we say that a space $X$ is a $\text{FU}(p)$-space if for every $A\subseteq X$ and $x\in cl_X(A)$ there is a sequence $(x_n)_{n \omega}$ in $A$ such that $x = p$-$\lim_{n \to \infty}x_n$ (that is, for every neigborhood $V$ of $x$, we have that $\{n \omega : x_n \in V\}\in p$). [CH] For every $K$-uniform MAD family $\Cal A$ there is a $P$-point $p$ of $\omega^*$ such that $\Cal F(\Cal A)$ is a $\text{FU}(p)$-space. We also establish the following. [CH] For two $P$-points $p,q\in \omega^*$, the following are equivalent. (1) $q\leq_{\text{RK}}p$. (2) For every $MAD$ family $\Cal A$, the space $\Cal F(\Cal A)$ is a $\text{FU}(p)$-space whenever it is a $\text{FU}(q)$-space.
Classification : 03E05, 03E50, 54A99, 54B99
Keywords: Franklin compact space; $P$-point; $\text{FU}(p)$-space; maximal almost disjoint family; Katětov ordering; Rudin-Keisler ordering
@article{CMUC_2007__48_4_a12,
     author = {Garc{\'\i}a-Ferreira, S. and Szeptycki, P. J.},
     title = {MAD families and $P$-points},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {699--705},
     publisher = {mathdoc},
     volume = {48},
     number = {4},
     year = {2007},
     mrnumber = {2375170},
     zbl = {1199.03028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2007__48_4_a12/}
}
TY  - JOUR
AU  - García-Ferreira, S.
AU  - Szeptycki, P. J.
TI  - MAD families and $P$-points
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2007
SP  - 699
EP  - 705
VL  - 48
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2007__48_4_a12/
LA  - en
ID  - CMUC_2007__48_4_a12
ER  - 
%0 Journal Article
%A García-Ferreira, S.
%A Szeptycki, P. J.
%T MAD families and $P$-points
%J Commentationes Mathematicae Universitatis Carolinae
%D 2007
%P 699-705
%V 48
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2007__48_4_a12/
%G en
%F CMUC_2007__48_4_a12
García-Ferreira, S.; Szeptycki, P. J. MAD families and $P$-points. Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 4, pp. 699-705. http://geodesic.mathdoc.fr/item/CMUC_2007__48_4_a12/