SP-scattered spaces; a new generalization of scattered spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 3, pp. 487-505.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The set of isolated points (resp. $P$-points) of a Tychonoff space $X$ is denoted by $\operatorname{Is}(X)$ (resp. $P(X))$. Recall that $X$ is said to be {\it scattered\/} if $\operatorname{Is}(A)\neq \varnothing $ whenever $\varnothing \neq A\subset X$. If instead we require only that $P(A)$ has nonempty interior whenever $\varnothing \neq A\subset X$, we say that $X$ is {\it SP-scattered\/}. Many theorems about scattered spaces hold or have analogs for {\it SP-scattered\/} spaces. For example, the union of a locally finite collection of SP-scattered spaces is SP-scattered. Some known theorems about Lindelöf or paracompact scattered spaces hold also in case the spaces are SP-scattered. If $X$ is a Lindelöf or a paracompact SP-scattered space, then so is its $P$-coreflection. Some results are given on when the product of two Lindelöf or paracompact spaces is Lindelöf or paracompact when at least one of the factors is SP-scattered. We relate our results to some on RG-spaces and $z$-dimension.
Classification : 54G10, 54G12
Keywords: scattered spaces; SP-scattered spaces; CB-index; sp-index; $P$-points; $P$-spaces; strong $P$-points; RG-spaces; $z$-dimension; locally finite; Lindelöf spaces; paracompact spaces; $P$-coreflection; $G_{\delta}$-topology; product spaces
@article{CMUC_2007__48_3_a8,
     author = {Henriksen, M. and Raphael, R. and Woods, R. G.},
     title = {SP-scattered spaces; a new generalization of scattered spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {487--505},
     publisher = {mathdoc},
     volume = {48},
     number = {3},
     year = {2007},
     mrnumber = {2374129},
     zbl = {1199.54188},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2007__48_3_a8/}
}
TY  - JOUR
AU  - Henriksen, M.
AU  - Raphael, R.
AU  - Woods, R. G.
TI  - SP-scattered spaces; a new generalization of scattered spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2007
SP  - 487
EP  - 505
VL  - 48
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2007__48_3_a8/
LA  - en
ID  - CMUC_2007__48_3_a8
ER  - 
%0 Journal Article
%A Henriksen, M.
%A Raphael, R.
%A Woods, R. G.
%T SP-scattered spaces; a new generalization of scattered spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2007
%P 487-505
%V 48
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2007__48_3_a8/
%G en
%F CMUC_2007__48_3_a8
Henriksen, M.; Raphael, R.; Woods, R. G. SP-scattered spaces; a new generalization of scattered spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 3, pp. 487-505. http://geodesic.mathdoc.fr/item/CMUC_2007__48_3_a8/