SP-scattered spaces; a new generalization of scattered spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 3, pp. 487-505
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The set of isolated points (resp. $P$-points) of a Tychonoff space $X$ is denoted by $\operatorname{Is}(X)$ (resp. $P(X))$. Recall that $X$ is said to be {\it scattered\/} if $\operatorname{Is}(A)\neq \varnothing $ whenever $\varnothing \neq A\subset X$. If instead we require only that $P(A)$ has nonempty interior whenever $\varnothing \neq A\subset X$, we say that $X$ is {\it SP-scattered\/}. Many theorems about scattered spaces hold or have analogs for {\it SP-scattered\/} spaces. For example, the union of a locally finite collection of SP-scattered spaces is SP-scattered. Some known theorems about Lindelöf or paracompact scattered spaces hold also in case the spaces are SP-scattered. If $X$ is a Lindelöf or a paracompact SP-scattered space, then so is its $P$-coreflection. Some results are given on when the product of two Lindelöf or paracompact spaces is Lindelöf or paracompact when at least one of the factors is SP-scattered. We relate our results to some on RG-spaces and $z$-dimension.
Classification :
54G10, 54G12
Keywords: scattered spaces; SP-scattered spaces; CB-index; sp-index; $P$-points; $P$-spaces; strong $P$-points; RG-spaces; $z$-dimension; locally finite; Lindelöf spaces; paracompact spaces; $P$-coreflection; $G_{\delta}$-topology; product spaces
Keywords: scattered spaces; SP-scattered spaces; CB-index; sp-index; $P$-points; $P$-spaces; strong $P$-points; RG-spaces; $z$-dimension; locally finite; Lindelöf spaces; paracompact spaces; $P$-coreflection; $G_{\delta}$-topology; product spaces
@article{CMUC_2007__48_3_a8,
author = {Henriksen, M. and Raphael, R. and Woods, R. G.},
title = {SP-scattered spaces; a new generalization of scattered spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {487--505},
publisher = {mathdoc},
volume = {48},
number = {3},
year = {2007},
mrnumber = {2374129},
zbl = {1199.54188},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2007__48_3_a8/}
}
TY - JOUR AU - Henriksen, M. AU - Raphael, R. AU - Woods, R. G. TI - SP-scattered spaces; a new generalization of scattered spaces JO - Commentationes Mathematicae Universitatis Carolinae PY - 2007 SP - 487 EP - 505 VL - 48 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2007__48_3_a8/ LA - en ID - CMUC_2007__48_3_a8 ER -
%0 Journal Article %A Henriksen, M. %A Raphael, R. %A Woods, R. G. %T SP-scattered spaces; a new generalization of scattered spaces %J Commentationes Mathematicae Universitatis Carolinae %D 2007 %P 487-505 %V 48 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_2007__48_3_a8/ %G en %F CMUC_2007__48_3_a8
Henriksen, M.; Raphael, R.; Woods, R. G. SP-scattered spaces; a new generalization of scattered spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 3, pp. 487-505. http://geodesic.mathdoc.fr/item/CMUC_2007__48_3_a8/