On non-normality points and metrizable crowded spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 3, pp. 523-527.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

$\beta X-\{p\}$ is non-normal for any metrizable crowded space $X$ and an arbitrary point $p\in X^{*}$.
Classification : 54D35
Keywords: nice family; $p$-filter; $p$-ultrafilter; projection; non-normality point; butterfly-point
@article{CMUC_2007__48_3_a10,
     author = {Logunov, Sergei},
     title = {On non-normality points and metrizable crowded spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {523--527},
     publisher = {mathdoc},
     volume = {48},
     number = {3},
     year = {2007},
     mrnumber = {2374131},
     zbl = {1199.54155},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2007__48_3_a10/}
}
TY  - JOUR
AU  - Logunov, Sergei
TI  - On non-normality points and metrizable crowded spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2007
SP  - 523
EP  - 527
VL  - 48
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2007__48_3_a10/
LA  - en
ID  - CMUC_2007__48_3_a10
ER  - 
%0 Journal Article
%A Logunov, Sergei
%T On non-normality points and metrizable crowded spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2007
%P 523-527
%V 48
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2007__48_3_a10/
%G en
%F CMUC_2007__48_3_a10
Logunov, Sergei. On non-normality points and metrizable crowded spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 3, pp. 523-527. http://geodesic.mathdoc.fr/item/CMUC_2007__48_3_a10/