Weak-bases and $D$-spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 2, pp. 281-289.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is shown that certain weak-base structures on a topological space give a $D$-space. This solves the question by A.V. Arhangel'skii of when quotient images of metric spaces are $D$-spaces. A related result about symmetrizable spaces also answers a question of Arhangel'skii. \smallskip \noindent {\bf Theorem.} {\sl Any symmetrizable space $X$ is a $D$-space $($hereditarily$)$.} \smallskip Hence, quotient mappings, with compact fibers, from metric spaces have a $D$-space image. What about quotient $s$-mappings? Arhangel'skii and Buzyakova have shown that spaces with a point-countable base are $D$-spaces so open $s$-images of metric spaces are already known to be $D$-spaces. A collection $\Cal W$ of subsets of a sequential space $X$ is said to be a {\it $w$-system\/} for the topology if whenever $x\in U\subseteq X$, with $U$ open, there exists a subcollection $\Cal V\subseteq \Cal W$ such that $x\in \bigcap \Cal V$, $\bigcup \Cal V$ is a weak-neighborhood of $x$, and $\bigcup \Cal V\subseteq U$. \smallskip \noindent {\bf Theorem.} {\sl A sequential space $X$ with a point-countable $w$-system is a $D$-space.} \smallskip \noindent {\bf Corollary.} {\sl A space $X$ with a point-countable weak-base is a $D$-space.} \smallskip \noindent {\bf Corollary.} {\sl Any $T_2$ quotient $s$-image of a metric space is a $D$-space.}
Classification : 54B15, 54D70, 54E25, 54E40
Keywords: quotient map; symmetrizable space; weak-base; $w$-structure; $D$-space
@article{CMUC_2007__48_2_a9,
     author = {Burke, Dennis K.},
     title = {Weak-bases and $D$-spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {281--289},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2007},
     mrnumber = {2338096},
     zbl = {1199.54065},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2007__48_2_a9/}
}
TY  - JOUR
AU  - Burke, Dennis K.
TI  - Weak-bases and $D$-spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2007
SP  - 281
EP  - 289
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2007__48_2_a9/
LA  - en
ID  - CMUC_2007__48_2_a9
ER  - 
%0 Journal Article
%A Burke, Dennis K.
%T Weak-bases and $D$-spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2007
%P 281-289
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2007__48_2_a9/
%G en
%F CMUC_2007__48_2_a9
Burke, Dennis K. Weak-bases and $D$-spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 2, pp. 281-289. http://geodesic.mathdoc.fr/item/CMUC_2007__48_2_a9/