Characterizations of $L^1$-predual spaces by centerable subsets
Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 2, pp. 239-243.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this note, we prove that a real or complex Banach space $X$ is an $L^1$-predual space if and only if every four-point subset of $X$ is centerable. The real case sharpens Rao's result in [{\it Chebyshev centers and centerable sets\/}, Proc. Amer. Math. Soc. {\bf 130} (2002), no. 9, 2593--2598] and the complex case is closely related to the characterizations of $L^1$-predual spaces by Lima [{\it Complex Banach spaces whose duals are $L_1$-spaces\/}, Israel J. Math. {\bf 24} (1976), no. 1, 59--72].
Classification : 41A65, 46B20
Keywords: Chebyshev radius; centerable subsets and $L^1 $-predual spaces
@article{CMUC_2007__48_2_a5,
     author = {Duan, Yanzheng and Lin, Bor-Luh},
     title = {Characterizations of $L^1$-predual spaces by centerable subsets},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {239--243},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2007},
     mrnumber = {2338092},
     zbl = {1199.41181},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2007__48_2_a5/}
}
TY  - JOUR
AU  - Duan, Yanzheng
AU  - Lin, Bor-Luh
TI  - Characterizations of $L^1$-predual spaces by centerable subsets
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2007
SP  - 239
EP  - 243
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2007__48_2_a5/
LA  - en
ID  - CMUC_2007__48_2_a5
ER  - 
%0 Journal Article
%A Duan, Yanzheng
%A Lin, Bor-Luh
%T Characterizations of $L^1$-predual spaces by centerable subsets
%J Commentationes Mathematicae Universitatis Carolinae
%D 2007
%P 239-243
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2007__48_2_a5/
%G en
%F CMUC_2007__48_2_a5
Duan, Yanzheng; Lin, Bor-Luh. Characterizations of $L^1$-predual spaces by centerable subsets. Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 2, pp. 239-243. http://geodesic.mathdoc.fr/item/CMUC_2007__48_2_a5/