Embedding into discretely absolutely star-Lindelöf spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 2, pp. 303-309.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A space $X$ is {\it discretely absolutely star-Lindelöf\/} if for every open cover $\Cal U$ of $X$ and every dense subset $D$ of $X$, there exists a countable subset $F$ of $D$ such that $F$ is discrete closed in $X$ and $\operatorname{St}(F,\Cal U)=X$, where $\operatorname{St}(F,{\Cal U}) = \bigcup \{U\in{\Cal U} : U\cap F\neq \emptyset \}$. We show that every Hausdorff star-Lindelöf space can be represented in a Hausdorff discretely absolutely star-Lindelöf space as a closed subspace.
Classification : 54C25, 54D20, 54G20
Keywords: normal; star-Lindelöf; centered-Lindelöf
@article{CMUC_2007__48_2_a11,
     author = {Song, Yan-Kui},
     title = {Embedding into discretely absolutely {star-Lindel\"of} spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {303--309},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2007},
     mrnumber = {2338098},
     zbl = {1199.54147},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2007__48_2_a11/}
}
TY  - JOUR
AU  - Song, Yan-Kui
TI  - Embedding into discretely absolutely star-Lindelöf spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2007
SP  - 303
EP  - 309
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2007__48_2_a11/
LA  - en
ID  - CMUC_2007__48_2_a11
ER  - 
%0 Journal Article
%A Song, Yan-Kui
%T Embedding into discretely absolutely star-Lindelöf spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2007
%P 303-309
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2007__48_2_a11/
%G en
%F CMUC_2007__48_2_a11
Song, Yan-Kui. Embedding into discretely absolutely star-Lindelöf spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 2, pp. 303-309. http://geodesic.mathdoc.fr/item/CMUC_2007__48_2_a11/