Strong boundedness and algebraically closed groups
Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 2, pp. 205-209.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $G$ be a non-trivial algebraically closed group and $X$ be a subset of $G$ generating $G$ in infinitely many steps. We give a construction of a binary tree associated with $(G,X)$. Using this we show that if $G$ is $\omega_1$-existentially closed then it is strongly bounded.
Classification : 20A15, 20E08, 20F65
Keywords: strongly bounded groups; existentially closed groups
@article{CMUC_2007__48_2_a1,
     author = {Majcher-Iwanow, Barbara},
     title = {Strong boundedness and algebraically closed groups},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {205--209},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2007},
     mrnumber = {2338088},
     zbl = {1174.20011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2007__48_2_a1/}
}
TY  - JOUR
AU  - Majcher-Iwanow, Barbara
TI  - Strong boundedness and algebraically closed groups
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2007
SP  - 205
EP  - 209
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2007__48_2_a1/
LA  - en
ID  - CMUC_2007__48_2_a1
ER  - 
%0 Journal Article
%A Majcher-Iwanow, Barbara
%T Strong boundedness and algebraically closed groups
%J Commentationes Mathematicae Universitatis Carolinae
%D 2007
%P 205-209
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2007__48_2_a1/
%G en
%F CMUC_2007__48_2_a1
Majcher-Iwanow, Barbara. Strong boundedness and algebraically closed groups. Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 2, pp. 205-209. http://geodesic.mathdoc.fr/item/CMUC_2007__48_2_a1/