Minimal and minimum size latin bitrades of each genus
Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 2, pp. 189-203.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Suppose that $T^{\circ}$ and $T^{\star}$ are partial latin squares of order $n$, with the property that each row and each column of $T^{\circ}$ contains the same set of entries as the corresponding row or column of $T^{\star}$. In addition, suppose that each cell in $T^{\circ}$ contains an entry if and only if the corresponding cell in $T^{\star}$ contains an entry, and these entries (if they exist) are different. Then the pair $T=(T^{\circ},T^{\star})$ forms a {\it latin bitrade\/}. The {\it size\/} of $T$ is the total number of filled cells in $T^{\circ}$ (equivalently $T^{\star}$). The latin bitrade is {\it minimal\/} if there is no latin bitrade $(U^{\circ},U^{\otimes})$ such that $U^{\circ}\subseteq T^{\circ}$. Drápal (2003) represented latin bitrades in terms of row, column and entry cycles, which he proved formed a coherent digraph. This digraph can be considered as a combinatorial surface, thus associating each latin bitrade with an integer genus, which is a robust structural property of the latin bitrade. For each genus $g\ge 0$, we construct a latin bitrade of smallest possible size, and also a minimal latin bitrade of size $8g+8$.
Classification : 05B15
Keywords: latin trade; bitrade; genus
@article{CMUC_2007__48_2_a0,
     author = {Lefevre, James and Donovan, Diane and Cavenagh, Nicholas and Dr\'apal, Ale\v{s}},
     title = {Minimal and minimum size latin bitrades of each genus},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {189--203},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2007},
     mrnumber = {2338087},
     zbl = {1199.05021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2007__48_2_a0/}
}
TY  - JOUR
AU  - Lefevre, James
AU  - Donovan, Diane
AU  - Cavenagh, Nicholas
AU  - Drápal, Aleš
TI  - Minimal and minimum size latin bitrades of each genus
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2007
SP  - 189
EP  - 203
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2007__48_2_a0/
LA  - en
ID  - CMUC_2007__48_2_a0
ER  - 
%0 Journal Article
%A Lefevre, James
%A Donovan, Diane
%A Cavenagh, Nicholas
%A Drápal, Aleš
%T Minimal and minimum size latin bitrades of each genus
%J Commentationes Mathematicae Universitatis Carolinae
%D 2007
%P 189-203
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2007__48_2_a0/
%G en
%F CMUC_2007__48_2_a0
Lefevre, James; Donovan, Diane; Cavenagh, Nicholas; Drápal, Aleš. Minimal and minimum size latin bitrades of each genus. Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 2, pp. 189-203. http://geodesic.mathdoc.fr/item/CMUC_2007__48_2_a0/