Minimal and minimum size latin bitrades of each genus
Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 2, pp. 189-203
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Suppose that $T^{\circ}$ and $T^{\star}$ are partial latin squares of order $n$, with the property that each row and each column of $T^{\circ}$ contains the same set of entries as the corresponding row or column of $T^{\star}$. In addition, suppose that each cell in $T^{\circ}$ contains an entry if and only if the corresponding cell in $T^{\star}$ contains an entry, and these entries (if they exist) are different. Then the pair $T=(T^{\circ},T^{\star})$ forms a {\it latin bitrade\/}. The {\it size\/} of $T$ is the total number of filled cells in $T^{\circ}$ (equivalently $T^{\star}$). The latin bitrade is {\it minimal\/} if there is no latin bitrade $(U^{\circ},U^{\otimes})$ such that $U^{\circ}\subseteq T^{\circ}$. Drápal (2003) represented latin bitrades in terms of row, column and entry cycles, which he proved formed a coherent digraph. This digraph can be considered as a combinatorial surface, thus associating each latin bitrade with an integer genus, which is a robust structural property of the latin bitrade. For each genus $g\ge 0$, we construct a latin bitrade of smallest possible size, and also a minimal latin bitrade of size $8g+8$.
@article{CMUC_2007__48_2_a0,
author = {Lefevre, James and Donovan, Diane and Cavenagh, Nicholas and Dr\'apal, Ale\v{s}},
title = {Minimal and minimum size latin bitrades of each genus},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {189--203},
publisher = {mathdoc},
volume = {48},
number = {2},
year = {2007},
mrnumber = {2338087},
zbl = {1199.05021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2007__48_2_a0/}
}
TY - JOUR AU - Lefevre, James AU - Donovan, Diane AU - Cavenagh, Nicholas AU - Drápal, Aleš TI - Minimal and minimum size latin bitrades of each genus JO - Commentationes Mathematicae Universitatis Carolinae PY - 2007 SP - 189 EP - 203 VL - 48 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2007__48_2_a0/ LA - en ID - CMUC_2007__48_2_a0 ER -
%0 Journal Article %A Lefevre, James %A Donovan, Diane %A Cavenagh, Nicholas %A Drápal, Aleš %T Minimal and minimum size latin bitrades of each genus %J Commentationes Mathematicae Universitatis Carolinae %D 2007 %P 189-203 %V 48 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_2007__48_2_a0/ %G en %F CMUC_2007__48_2_a0
Lefevre, James; Donovan, Diane; Cavenagh, Nicholas; Drápal, Aleš. Minimal and minimum size latin bitrades of each genus. Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 2, pp. 189-203. http://geodesic.mathdoc.fr/item/CMUC_2007__48_2_a0/