On semiregular digraphs of the congruence $x^k\equiv y \pmod n$
Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 1, pp. 41-58.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We assign to each pair of positive integers $n$ and $k\geq 2$ a digraph $G(n,k)$ whose set of vertices is $H=\{0,1,\dots,n-1\}$ and for which there is a directed edge from $a\in H$ to $b\in H$ if $a^k\equiv b\pmod n$. The digraph $G(n,k)$ is semiregular if there exists a positive integer $d$ such that each vertex of the digraph has indegree $d$ or 0. Generalizing earlier results of the authors for the case in which $k=2$, we characterize all semiregular digraphs $G(n,k)$ when $k\geq 2$ is arbitrary.
Classification : 05C20, 05C25, 11A07, 11A15, 20K01
Keywords: Chinese remainder theorem; congruence; group theory; dynamical system; regular and semiregular digraphs
@article{CMUC_2007__48_1_a3,
     author = {Somer, Lawrence and K\v{r}{\'\i}\v{z}ek, Michal},
     title = {On semiregular digraphs of the congruence $x^k\equiv y \pmod n$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {41--58},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {2007},
     mrnumber = {2338828},
     zbl = {1174.05058},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2007__48_1_a3/}
}
TY  - JOUR
AU  - Somer, Lawrence
AU  - Křížek, Michal
TI  - On semiregular digraphs of the congruence $x^k\equiv y \pmod n$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2007
SP  - 41
EP  - 58
VL  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2007__48_1_a3/
LA  - en
ID  - CMUC_2007__48_1_a3
ER  - 
%0 Journal Article
%A Somer, Lawrence
%A Křížek, Michal
%T On semiregular digraphs of the congruence $x^k\equiv y \pmod n$
%J Commentationes Mathematicae Universitatis Carolinae
%D 2007
%P 41-58
%V 48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2007__48_1_a3/
%G en
%F CMUC_2007__48_1_a3
Somer, Lawrence; Křížek, Michal. On semiregular digraphs of the congruence $x^k\equiv y \pmod n$. Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 1, pp. 41-58. http://geodesic.mathdoc.fr/item/CMUC_2007__48_1_a3/