On semiregular digraphs of the congruence $x^k\equiv y \pmod n$
Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 1, pp. 41-58
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We assign to each pair of positive integers $n$ and $k\geq 2$ a digraph $G(n,k)$ whose set of vertices is $H=\{0,1,\dots,n-1\}$ and for which there is a directed edge from $a\in H$ to $b\in H$ if $a^k\equiv b\pmod n$. The digraph $G(n,k)$ is semiregular if there exists a positive integer $d$ such that each vertex of the digraph has indegree $d$ or 0. Generalizing earlier results of the authors for the case in which $k=2$, we characterize all semiregular digraphs $G(n,k)$ when $k\geq 2$ is arbitrary.
Classification :
05C20, 05C25, 11A07, 11A15, 20K01
Keywords: Chinese remainder theorem; congruence; group theory; dynamical system; regular and semiregular digraphs
Keywords: Chinese remainder theorem; congruence; group theory; dynamical system; regular and semiregular digraphs
@article{CMUC_2007__48_1_a3,
author = {Somer, Lawrence and K\v{r}{\'\i}\v{z}ek, Michal},
title = {On semiregular digraphs of the congruence $x^k\equiv y \pmod n$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {41--58},
publisher = {mathdoc},
volume = {48},
number = {1},
year = {2007},
mrnumber = {2338828},
zbl = {1174.05058},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2007__48_1_a3/}
}
TY - JOUR AU - Somer, Lawrence AU - Křížek, Michal TI - On semiregular digraphs of the congruence $x^k\equiv y \pmod n$ JO - Commentationes Mathematicae Universitatis Carolinae PY - 2007 SP - 41 EP - 58 VL - 48 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2007__48_1_a3/ LA - en ID - CMUC_2007__48_1_a3 ER -
Somer, Lawrence; Křížek, Michal. On semiregular digraphs of the congruence $x^k\equiv y \pmod n$. Commentationes Mathematicae Universitatis Carolinae, Tome 48 (2007) no. 1, pp. 41-58. http://geodesic.mathdoc.fr/item/CMUC_2007__48_1_a3/